Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(9): 4190-4198, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603820

RESUMO

Polyelectrolyte coacervates, with their greater-than-water density, low interfacial energy, shear thinning viscosity, and ability to undergo structural arrest, mediate the formation of diverse load-bearing macromolecular materials in living organisms as well as in industrial material fabrication. Coacervates, however, have other useful attributes that are challenging to study given the metastability of coacervate colloidal droplets and a lack of suitable analytical methods. We adopt solution electrochemistry and nuclear magnetic resonance measurements to obtain remarkable insights about coacervates as solvent media for low-molecular-weight catechols. When catechols are added to dispersions of coacervated polyelectrolytes, there are two significant consequences: (1) catechols preferentially partition up to 260-fold into the coacervate phase, and (2) coacervates stabilize catechol redox potentials by up to +200 mV relative to the equilibrium solution. The results suggest that the relationship between phase-separated polyelectrolytes and their client molecules is distinct from that existing in aqueous solution and has the potential for insulating many redox-unstable chemicals.


Assuntos
Catecóis , Software , Humanos , Polieletrólitos , Solubilidade , Peso Molecular , Água
2.
J Struct Biol ; 213(2): 107725, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744410

RESUMO

Chitin-binding proteins (CBPs) are a versatile group of proteins found in almost every organism on earth. CBPs are involved in enzymatic carbohydrate degradation and also serve as templating scaffolds in the exoskeleton of crustaceans and insects. One specific chitin-binding motif found across a wide range of arthropods' exoskeletons is the "extended Rebers and Riddiford" consensus (R&R), whose mechanism of chitin binding remains unclear. Here, we report the 3D structure and molecular level interactions of a chitin-binding domain (CBD-γ) located in a CBP from the beak of the jumbo squid Dosidicus gigas. This CBP is one of four chitin-binding proteins identified in the beak mouthpart of D. gigas and is believed to interact with chitin to form a scaffold network that is infiltrated with a second set of structural proteins during beak maturation. We used solution state NMR spectroscopy to elucidate the molecular interactions between CBD-γ and the soluble chitin derivative pentaacetyl-chitopentaose (PCP), and find that folding of CBD-γ is triggered upon its interaction with PCP. To our knowledge, this is the first experimental 3D structure of a CBP containing the R&R consensus motif, which can be used as a template to understand in more details the role of the R&R motif found in a wide range of CBP-chitin complexes. The present structure also provides molecular information for biomimetic synthesis of graded biomaterials using aqueous-based chemistry and biopolymers.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Quitina/análogos & derivados , Quitina/metabolismo , Decapodiformes/química , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Quitina/química , Dicroísmo Circular , Clonagem Molecular , Glucosídeos/química , Glucosídeos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Conformação Proteica , Domínios Proteicos , Soluções
3.
Biochim Biophys Acta ; 1860(6): 1362-72, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27015761

RESUMO

BACKGROUND: Temporins are attractive templates for the development of antibiotics. However, many temporins are inactive against Gram-negative bacteria. Previously, we demonstrated conjugation of a lipopolysaccharide binding motif peptide to temporins yielded hybrid non-haemolytic AMPs that killed several Gram-negative bacteria. METHODS: We carried out a systematic Ala replacement of individual cationic and polar amino acid residues of LG21, a hybrid AMP consisted of temporin B (TB) and LPS binding motif. These Ala containing analogs of LG21 were examined for antibacterial activity, cell membrane permeabilization and liposome leakage assays using optical spectroscopic methods. Atomic resolution structure of LG21 was determined in zwitterionic dodecyl phosphocholine (DPC) micelles by NMR spectroscopy. RESULTS: Cationic residues in the LPS binding motif of LG21 were critical for bactericidal and membrane permeabilization. Detergent bound structure of LG21 revealed helical conformation containing extensive sidechain/sidechain packing including cation/π interactions in the LPS binding motif. The helical structure of LG21 resembled a 'lollipop' like shape that was sustained by a compacted bulky aromatic/cationic head with a comparatively thinner 'stick' at the N-terminal region. The 'head' of the structure could be localized into micelle-water interfacial region whereas the 'stick' region may be inserted into the hydrophobic core of micelle. CONCLUSIONS: The LPS binding motif of LG21 played dominant roles in broad spectrum activity and the 3-D structure provided plausible mechanistic insights for permeabilization of bacterial membrane. GENERAL SIGNIFICANCE: Hybrid AMPs containing LPS binding motif could be useful for the structure based development of broad spectrum antibiotics.


Assuntos
Anti-Infecciosos/química , Lipopolissacarídeos/química , Proteínas/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Sítios de Ligação , Lipopolissacarídeos/metabolismo , Permeabilidade , Estrutura Secundária de Proteína , Proteínas/farmacologia
4.
Biopolymers ; 106(3): 345-56, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26849911

RESUMO

Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 µM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016.


Assuntos
Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Membrana Celular/efeitos dos fármacos , Oligopeptídeos/síntese química , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Meios de Cultura/farmacologia , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Lipopolissacarídeos/química , Camundongos , Testes de Sensibilidade Microbiana , Oligopeptídeos/farmacologia , Ligação Proteica , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade
5.
Biochim Biophys Acta ; 1840(10): 3006-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24997421

RESUMO

BACKGROUND: Protegin-1 (PG-1: RGGRLCYCRRRFCVCVGR-amide) assumes a rigid ß-hairpin like structure that is stabilized by two disulfide bridges between Cys6-Cys15 and Cys8-Cys13. Previous studies, employing linear analogs of PG-1, with Cys to Ala mutations or modified Cys, have demonstrated that the disulfide bridges are critical for the broad spectrum and salt resistant antimicrobial activity of PG-1. METHODS: In order to understand structural and functional roles of disulfide bonds in protegrins, we have synthesized a Cys deleted variant of PG-1 or CDP-1, RGGRLYRRRFVVGR-amide, and two of its analogs, RR11, RLYRRRFVVGR-amide, and LR10, LYRRRFVVGR-amide, containing deletion of residues at the N-terminus. These peptides have been characterized for bactericidal activity and mode of action in lipopolysaccharide (LPS) using optical spectroscopy, ITC and NMR. RESULTS: Antibacterial activity, against Gram-negative and Gram-positive strains, of the three peptides follows the order: CDP-1>RR11>LR10. LR10 displays only limited activity toward Gram-negative strains. CDP-1 demonstrates efficient membrane permeabilization and high-affinity interactions with LPS. CDP-1 and RR11 both assume ß-hairpin like compact structures in complex with LPS, whereas LR10 adopts an extended conformation in LPS. In zwitterionic DPC micelles CDP-1 and the truncated analog peptides do not adopt folded conformations. MAJOR CONCLUSIONS: Despite the absence of stabilizing disulfide bridges CDP-1 shows broad-spectrum antibacterial activity and assumes ß-hairpin like structure in complex with LPS. The ß-hairpin structure may be essential for outer membrane permeabilization and cell killing.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Permeabilidade da Membrana Celular , Membrana Celular/química , Bactérias Gram-Negativas/química , Bactérias Gram-Positivas/química , Antibacterianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Membrana Celular/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Estrutura Secundária de Proteína
6.
Antimicrob Agents Chemother ; 58(4): 1987-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24419338

RESUMO

Host defense antimicrobial peptides (AMPs) are a promising source of antibiotics for the treatment of multiple-drug-resistant pathogens. Lipopolysaccharide (LPS), the major component of the outer leaflet of the outer membrane of Gram-negative bacteria, functions as a permeability barrier against a variety of molecules, including AMPs. Further, LPS or endotoxin is the causative agent of sepsis killing 100,000 people per year in the United States alone. LPS can restrict the activity of AMPs inducing aggregations at the outer membrane, as observed for frog AMPs, temporins, and also in model AMPs. Aggregated AMPs, "trapped" by the outer membrane, are unable to traverse the cell wall, causing their inactivation. In this work, we show that these inactive AMPs can overcome LPS-induced aggregations while conjugated with a short LPS binding ß-boomerang peptide motif and become highly bactericidal. The generated hybrid peptides exhibit activity against Gram-negative and Gram-positive bacteria in high-salt conditions and detoxify endotoxin. Structural and biophysical studies establish the mechanism of action of these peptides in LPS outer membrane. Most importantly, this study provides a new concept for the development of a potent broad-spectrum antibiotic with efficient outer membrane disruption as the mode of action.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Lipopolissacarídeos/química , Peptídeos/química , Peptídeos/farmacologia , Animais , Anti-Infecciosos/efeitos adversos , Peptídeos Catiônicos Antimicrobianos/efeitos adversos , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/efeitos adversos
7.
Biotechnol Bioeng ; 111(1): 37-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23860860

RESUMO

Antimicrobial peptides (AMPs) kill microbes by non-specific membrane permeabilization, making them ideal templates for designing novel peptide-based antibiotics that can combat multi-drug resistant pathogens. For maximum efficacy in vivo and in vitro, AMPs must be biocompatible, salt-tolerant and possess broad-spectrum antimicrobial activity. These attributes can be obtained by rational design of peptides guided by good understanding of peptide structure-function. Toward this end, this study investigates the influence of charge and hydrophobicity on the activity of tryptophan and arginine rich decamer peptides engineered from a salt resistant human ß-defensin-28 variant. Mechanistic investigations of the decamers with detergents mimicking the composition of bacterial and mammalian membrane, reveal a correlation between improved antibacterial activity and the increase in tryptophan and positive residue content, while keeping hemolysis low. The potent antimicrobial activity and high cell membrane selective behavior of the two most active decamers, D5 and D6, are attributed to an optimum peptide charge to hydrophobic ratio bestowed by systematic arginine and tryptophan substitution. D5 and D6 show surface localization behavior with binding constants of 1.86 × 10(8) and 2.6 × 10(8) M(-1) , respectively, as determined by isothermal calorimetry measurements. NMR derived structures of D5 and D6 in SDS detergent micelles revealed proximity of Trp and Arg residues in an extended structural scaffold. Such potential cation-π interactions may be critical in cell permeabilization of the AMPs. The fundamental characterization of the engineered decamers provided in this study improves the understanding of structure-activity relationship of short arginine tryptophan rich AMPs, which will pave the way for future de novo design of potent AMPs for therapeutic and biomedical applications.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Arginina/química , Engenharia de Proteínas/métodos , Triptofano/química , Antibacterianos/química , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Arginina/genética , Arginina/metabolismo , Bactérias/citologia , Bactérias/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular , Ressonância Magnética Nuclear Biomolecular , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Relação Estrutura-Atividade , Triptofano/genética , Triptofano/metabolismo
8.
Nat Nanotechnol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671050

RESUMO

Biological systems can create materials with intricate structures and specialized functions. In comparison, precise control of structures in human-made materials has been challenging. Here we report on insect cuticle peptides that spontaneously form nanocapsules through a single-step solvent exchange process, where the concentration gradient resulting from the mixing of water and acetone drives the localization and self-assembly of the peptides into hollow nanocapsules. The underlying driving force is found to be the intrinsic affinity of the peptides for a particular solvent concentration, while the diffusion of water and acetone creates a gradient interface that triggers peptide localization and self-assembly. This gradient-mediated self-assembly offers a transformative pathway towards simple generation of drug delivery systems based on peptide nanocapsules.

9.
Biochim Biophys Acta ; 1818(5): 1250-60, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22285780

RESUMO

In the mitogen activated protein kinase (MAPK) cascades of budding yeast, the scaffold protein Ste5 is recruited to the plasma membrane to transmit pheromone induced signal. A region or domain of Ste5 i.e. residues P44-R67, referred here as Ste5PM24, has been known to be involved in direct interactions with the membrane. In order to gain structural insights into membrane interactions of Ste5, here, we have investigated structures and interactions of two synthetic peptide fragments of Ste5, Ste5PM24, and a hyperactive mutant, Ste5PM24LM, by NMR, ITC, and fluorescence spectroscopy, with lipid membranes. We observed that Ste5PM24 predominantly interacted only with the anionic lipid vesicles. By contrast, Ste5PM24LM exhibited binding with negatively charged as well as zwitterionic or mixed lipid vesicles. Binding of Ste5 peptides with the negatively charged lipid vesicles were primarily driven by hydrophobic interactions. NMR studies revealed that Ste5PM24 assumes dynamic or transient conformations in zwitterionic dodecylphosphocholine (DPC) micelles. By contrast, NMR structure, obtained in anionic sodium dodecyl sulphate (SDS), demonstrated amphipathic helical conformations for the central segment of Ste5PM24. The hydrophobic surface of the helix was found to be buried inside the micelles. Taken together, these results provide important insights toward the structure and specificity determinants of the scaffold protein interactions with the plasma membrane.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Membrana Celular/química , Membranas Artificiais , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Micelas , Ressonância Magnética Nuclear Biomolecular , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Dodecilsulfato de Sódio/química
10.
Biochim Biophys Acta ; 1818(7): 1613-24, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22464970

RESUMO

Tachyplesin-1, a disulfide stabilized beta-hairpin antimicrobial peptide, can be found at the hemocytes of horse shoe crab Tachypleus tridentatus. A cysteine deleted linear analog of tachyplesin-1 or CDT (KWFRVYRGIYRRR-NH2) contains a broad spectrum of bactericidal activity with a reduced hemolytic property. The bactericidal activity of CDT stems from selective interactions with the negatively charged lipids including LPS. In this work, CDT-LPS interactions were investigated using NMR spectroscopy, optical spectroscopy and functional assays. We found that CDT neutralized LPS and disrupted permeability barrier of the outer membrane. Zeta potential and ITC studies demonstrated charge compensation and hydrophobic interactions of CDT with the LPS-outer membrane, respectively. Secondary structure of the peptide was probed by CD and FT-IR experiments indicating beta-strands and/or beta-turn conformations in the LPS micelle. An ensemble of structures, determined in LPS micelle by NMR, revealed a beta-hairpin like topology of the CDT peptide that was typified by an extended cationic surface and a relatively shorter segment of hydrophobic region. Interestingly, at the non-polar face, residue R11 was found to be in a close proximity to the indole ring of W2, suggesting a cation-n type interactions. Further, saturation transfer difference (STD) NMR studies established intimate contacts among the aromatic and cationic residues of CDT with the LPS micelle. Fluorescence and dynamic light scattering experiments demonstrated that CDT imparted structural destabilization to the aggregated states of LPS. Collectively, atomic resolution structure and interactions of CDT with the outer membrane-LPS could be exploited for developing potent broad spectrum antimicrobial and anti-sepsis agents.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Ligação a DNA/química , Lipopolissacarídeos/química , Micelas , Peptídeos Cíclicos/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Calorimetria , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Condutividade Elétrica , Endotoxinas/química , Endotoxinas/metabolismo , Caranguejos Ferradura/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipopolissacarídeos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Deleção de Sequência , Espectroscopia de Infravermelho com Transformada de Fourier , Fator de Necrose Tumoral alfa/metabolismo
11.
Commun Biol ; 6(1): 348, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997596

RESUMO

TGFBI-related corneal dystrophy (CD) is characterized by the accumulation of insoluble protein deposits in the corneal tissues, eventually leading to progressive corneal opacity. Here we show that ATP-independent amyloid-ß chaperone L-PGDS can effectively disaggregate corneal amyloids in surgically excised human cornea of TGFBI-CD patients and release trapped amyloid hallmark proteins. Since the mechanism of amyloid disassembly by ATP-independent chaperones is unknown, we reconstructed atomic models of the amyloids self-assembled from TGFBIp-derived peptides and their complex with L-PGDS using cryo-EM and NMR. We show that L-PGDS specifically recognizes structurally frustrated regions in the amyloids and releases those frustrations. The released free energy increases the chaperone's binding affinity to amyloids, resulting in local restructuring and breakage of amyloids to protofibrils. Our mechanistic model provides insights into the alternative source of energy utilized by ATP-independent disaggregases and highlights the possibility of using these chaperones as treatment strategies for different types of amyloid-related diseases.


Assuntos
Distrofias Hereditárias da Córnea , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Córnea/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Amiloide/metabolismo , Chaperonas Moleculares/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Trifosfato de Adenosina/metabolismo
12.
Biochemistry ; 51(40): 7863-72, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22978677

RESUMO

The virus-host cell fusion process is mediated by a membrane anchored viral fusion protein that inserts its hydrophobic fusion peptide into the plasma membrane of the host cell, initiating the fusion reaction. Therefore, fusion peptides are an important functional constituent of the fusion proteins of enveloped viruses. In this work, we characterize the fusion peptide or VT18 (V(84)YPFMWGGAYCFCDAENT(101)) of Chikungunya virus (CHIKV) using NMR and fluorescence spectroscopy in zwitterionic lipid environments. Our results demonstrate that the VT18 peptide is able to induce liposome fusions in a pH independent manner and interacts with the zwitterionic lipid vesicles. The NMR derived three-dimensional structure of VT18, in solution of dodecylphosphocholine (DPC) micelles, is typified by extended or ß-type conformations for most of the residues, whereby residues M88-W89-G90-G91 adopt a type I ß-turn conformation. Strikingly, the aromatic side chains of residues Y85, F87, Y93, and F95 in the VT18 structure are found to be well-packed forming an aromatic core. In particular, residue F87 is situated at the center of the aromatic core establishing a close proximity with other aromatic side chains. Further, the aromatic core residues are also involved in packing interactions with the side chains of residues M88, C94. Paramagnetic relaxation enhancement NMR, using spin labeled doxyl lipids, indicated that the aromatic core residues of VT18 are well inserted into the micelles, whereas the polar residues at the C-terminus may be surface localized. The atomic resolution structure and lipid interactions of CHIKV fusion peptide presented here will aid to uncover the fusion mechanism by the type II viral fusion proteins.


Assuntos
Vírus Chikungunya/metabolismo , Micelas , Proteínas Virais de Fusão/química , Sequência de Aminoácidos , Vírus Chikungunya/genética , Concentração de Íons de Hidrogênio , Lipídeos/química , Lipossomos/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Espectrometria de Fluorescência , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus
13.
J Biol Chem ; 286(27): 24394-406, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21586570

RESUMO

Temporins are a group of closely related short antimicrobial peptides from frog skin. Lipopolysaccharide (LPS), the major constituent of the outer membrane of gram-negative bacteria, plays important roles in the activity of temporins. Earlier studies have found that LPS induces oligomerization of temporin-1Tb (TB) thus preventing its translocation across the outer membrane and, as a result, reduces its activity on gram-negative bacteria. On the other hand, temporin-1Tl (TL) exhibits higher activity, presumably because of lack of such oligomerization. A synergistic mechanism was proposed, involving TL and TB in overcoming the LPS-mediated barrier. Here, to gain insights into interactions of TL and TB within LPS, we investigated the structures and interactions of TL, TB, and TL+TB in LPS micelles, using NMR and fluorescence spectroscopy. In the context of LPS, TL assumes a novel antiparallel dimeric helical structure sustained by intimate packing between aromatic-aromatic and aromatic-aliphatic residues. By contrast, independent TB has populations of helical and aggregated conformations in LPS. The LPS-induced aggregated states of TB are largely destabilized in the presence of TL. Saturation transfer difference NMR studies have delineated residues of TL and TB in close contact with LPS and enhanced interactions of these two peptides with LPS, when combined together. Fluorescence resonance energy transfer and (31)P NMR have pointed out the proximity of TL and TB in LPS and conformational changes of LPS, respectively. Importantly, these results provide the first structural insights into the mode of action and synergism of antimicrobial peptides at the level of the LPS-outer membrane.


Assuntos
Proteínas de Anfíbios/química , Permeabilidade da Membrana Celular , Lipopolissacarídeos/química , Micelas , Multimerização Proteica , Proteínas/química , Proteínas de Anfíbios/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos , Transferência Ressonante de Energia de Fluorescência , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Proteínas/metabolismo , Ranidae
14.
Bioconjug Chem ; 23(8): 1639-47, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22769015

RESUMO

A simple and specific strategy based on the bioconjugation of a photosensitizer protophophyrin IX (PpIX) with a lipopolysaccharide (LPS) binding antimicrobial peptide YI13WF (YVLWKRKRKFCFI-Amide) has been developed for the effective fluorescent imaging and photodynamic inactivation of Gram-negative bacterial strains. The intracellular fluorescent imaging and photodynamic antimicrobial chemotherapy (PACT) studies supported our hypothesis that the PpIX-YI13WF conjugates could serve as efficient probes to image the bacterial strains and meanwhile indicated the potent activities against Gram-negative bacterial pathogens especially for those with antibiotics resistance when exposed to the white light irradiation. Compared to the monomeric PpIX-YI13WF conjugate, the dimeric conjugate indicated the stronger fluorescent imaging signals and higher photoinactivation toward the Gram-negative bacterial pathogens throughout the whole concentration range. In addition, the photodynamic bacterial inactivation also demonstrated more potent activity than the minimum inhibitory concentration (MIC) values of dimeric PpIX-YI13WF conjugate itself observed for E. coli DH5a (~4 times), S. enterica (~8 times), and other Gram-negative strains including antibiotic-resistant E. coli BL21 (~8 times) and K. pneumoniae (~16 times). Moreover, both fluorescent imaging and photoinactivation measurements also demonstrated that the dimeric PpIX-YI13WF conjugate could selectively recognize bacterial strains over mammalian cells and generate less photo damage to mammalian cells. We believed that the enhanced fluorescence and bacterial inactivation were probably attributed to the higher binding affinity between dimeric photosensitizer peptide conjugate and LPS components on the surface of bacterial strains, which were the results of efficient multivalent interactions.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bactérias Gram-Negativas/citologia , Espaço Intracelular/metabolismo , Lipopolissacarídeos/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Imagem Molecular/métodos , Protoporfirinas/química , Amidas/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/efeitos da radiação , Dimerização , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos da radiação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Negativas/efeitos da radiação , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos da radiação , Dados de Sequência Molecular , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia
15.
Adv Mater ; 34(25): e2103828, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34436789

RESUMO

The underwater adhesive prowess of aquatic mussels has been largely attributed to the abundant post-translationally modified amino acid l-3,4-dihydroxyphenylalanine (Dopa) in mussel foot proteins (MFPs) that make up their adhesive threads. More recently, it has been suggested that during thread fabrication, MFPs form intermediate fluidic phases such as liquid crystals or coacervates regulated by a liquid-liquid phase separation (LLPS) process. Here, it is shown that Dopa plays another central role during mussel fiber formation, by enabling LLPS of Pvfp-5ß, a main MFP of the green mussel Perna viridis. Using residue-specific substitution of Tyrosine (Tyr) for Dopa during recombinant expression, Dopa-substituted Pvfp-5ß is shown to exhibit LLPS under seawater-like conditions, whereas the Tyr-only version forms insoluble aggregates. Combining quantum chemistry calculations and solution NMR, a transient H-bonding network requiring the two hydroxyl groups of Dopa is found to be critical to enable LLPS in Dopa-mutated Pvfp-5ß. Overall, the study suggests that Dopa plays an important role in regulating LLPS of MFPs, which may be critical to concentrate the adhesive proteins at the plaque/substrate interface and therefore produce a more robust adhesive. The findings also provide molecular-level lessons to guide biomanufacturing of protein-based materials such as bioadhesives and load-bearing fibers.


Assuntos
Bivalves , Di-Hidroxifenilalanina , Adesivos/química , Aminoácidos , Animais , Bivalves/química , Bivalves/genética , Di-Hidroxifenilalanina/metabolismo , Proteínas/química
16.
Biochem Biophys Res Commun ; 391(1): 159-65, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19903453

RESUMO

The globular head domain of talin, a large multi-domain cytoplasmic protein, is required for inside-out activation of the integrins, a family of heterodimeric transmembrane cell adhesion molecules. Talin head contains a FERM domain that is composed of F1, F2, and F3 subdomains. A F0 subdomain is located N-terminus to F1. The F3 contains a canonical phosphotyrosine binding (PTB) fold that directly interacts with the membrane proximal NPxY/F motif in the integrin beta cytoplasmic tail. This interaction is stabilized by the F2 that interacts with the lipid head-groups of the plasma membrane. In comparison to F2 and F3, the properties of the F0F1 remains poorly characterized. Here, we showed that F0F1 is essential for talin-induced activation of integrin alphaLbeta2 (LFA-1). F0F1 has a high content of beta-sheet secondary structure, and it tends to homodimerize that may provide stability against proteolysis and chaotrope induced unfolding.


Assuntos
Antígeno-1 Associado à Função Linfocitária/metabolismo , Talina/química , Talina/metabolismo , Linhagem Celular , Humanos , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Talina/genética
17.
Proteins ; 74(2): 328-43, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18618697

RESUMO

The sterile alpha-motif (SAM), a relatively small ( approximately 70 amino acids) interaction domain, is found in a variety of proteins involved in cell signaling, transcription regulation, and scaffolding. The Ste11 protein kinase from the mitogen activated protein kinase (MAPK) signaling cascades of the budding yeast is regulated by a SAM domain located at the N-terminus of full-length protein. In solution, the Ste11 SAM domain exists as a well-folded dimeric structure that is involved in interaction with the cognate SAM domain from an adaptor protein Ste50. In this work, we show that the Ste11 SAM domain has an intrinsic affinity towards the lipid membranes. The solution conformation of the Ste11 SAM determined in perdeuterated DPC micelle, using NMR spectroscopy, is defined by five helices of different lengths connected by a number of loops. In the micelle bound state, the non-polar and aromatic residues of the Ste11 SAM lack a native-like packing and are presumably engaged in interactions with the micelle. Using two different paramagnetic doxyl-lipids; we have mapped out localization of Ste11 SAM residues at the micelle surface. Most of the residues appear to localize at the interfacial region of the micelle. However, a number of non-polar residues from the central region of the domain are found to be located inside the core of the micelle including residues from the helix 4 and a loop between helix 2 and helix 3. Isothermal titration calorimetry studies demonstrate that a facile insertion of the Ste11 SAM into the DPC micelle is primarily driven by a large change in enthalpy, -50 kcal/mol with an apparent equilibrium association constant (Ka) of 7.86 x 10(6) M(-1). Interestingly, an interfacial mutant L60R of the Ste11 SAM lacking the dimeric structure does not show detectable interactions with the lipid micelle. The micelle-bound structure of the Ste11 SAM domain described in this work may have potential implications in the regulation of MAPK signaling whereby positioning of the Ste11 protein in close proximity to the membrane may facilitate efficient phosphorylation of the Ste11 kinase by the membrane attached upstream Ste20/pak kinase.


Assuntos
MAP Quinase Quinase Quinases/química , Fosforilcolina/análogos & derivados , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Animais , Calorimetria , Dicroísmo Circular , MAP Quinase Quinase Quinases/metabolismo , Espectroscopia de Ressonância Magnética , Micelas , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilcolina/química , Fosforilcolina/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
18.
Philos Trans R Soc Lond B Biol Sci ; 374(1784): 20190198, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31495314

RESUMO

Barnacles employ a protein-based cement to firmly attach to immersed substrates. The cement proteins (CPs) have previously been identified and sequenced. However, the molecular mechanisms of adhesion are not well understood, in particular, because the three-dimensional molecular structure of CPs remained unknown to date. Here, we conducted multi-dimensional nuclear magnetic resonance (NMR) studies and molecular dynamics (MD) simulations of recombinant Megabalanus rosa Cement Protein 20 (rMrCP20). Our NMR results show that rMrCP20 contains three main folded domain regions intervened by two dynamic loops, resulting in multiple protein conformations that exist in equilibrium. We found that 12 out of 32 Cys in the sequence engage in disulfide bonds that stabilize the ß-sheet domains owing to their placement at the extremities of ß-strands. Another feature unveiled by NMR is the location of basic residues in turn regions that are exposed to the solvent, playing an important role for intermolecular contact with negatively charged surfaces. MD simulations highlight a highly stable and conserved ß-motif (ß7-ß8), which may function as nuclei for amyloid-like nanofibrils previously observed in the cured adhesive cement. To the best of our knowledge, this is the first report describing the tertiary structure of an extracellular biological adhesive protein at the molecular level. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.


Assuntos
Proteínas de Artrópodes/genética , Thoracica/química , Thoracica/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
Adv Sci (Weinh) ; 6(21): 1901173, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728282

RESUMO

Biological gels generally require polymeric chains that produce long-lived physical entanglements. Low molecular weight colloids offer an alternative to macromolecular gels, but often require ad-hoc synthetic procedures. Here, a short biomimetic peptide composed of eight amino acid residues derived from squid sucker ring teeth proteins is demonstrated to form hydrogel in water without any cross-linking agent or chemical modification and exhibits a stiffness on par with the stiffest peptide hydrogels. Combining solution and solid-state NMR, circular dichroism, infrared spectroscopy, and X-ray scattering, the peptide is shown to form a supramolecular, semiflexible gel assembled from unusual right-handed 310-helices stabilized in solution by π-π stacking. During gelation, the 310-helices undergo conformational transition into antiparallel ß-sheets with formation of new interpeptide hydrophobic interactions, and molecular dynamic simulations corroborate stabilization by cross ß-sheet oligomerization. The current study broadens the range of secondary structures available to create supramolecular hydrogels, and introduces 310-helices as transient building blocks for gelation via a 310-to-ß-sheet conformational transition.

20.
ACS Omega ; 3(12): 18911-18916, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458453

RESUMO

A green, mussel-inspired bioadhesive based on oligomerization of hydrocaffeic acid was synthesized in water by an ultrafast one-step reaction in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as an activating agent. The resulting oligomers exhibited strong wet adhesion when applied to different substrates including glass, stainless steel, and aluminum. Compared to most commercial adhesives, this bioinspired adhesive is produced via a sustainable and green process, i.e., aqueous-based synthesis, one-step reaction, and in the absence of any purification step to obtain the final functional adhesive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA