Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 144(24): 7412-7420, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31674602

RESUMO

We introduce a technique called ambient electrospray deposition Raman spectroscopy (AESD RS) for rapid and sensitive surface-enhanced Raman scattering (SERS) based detection of analytes using a miniature Raman spectrometer. Using electrospray, soft landing of preformed silver nanoparticles (AgNPs) was performed for 30-40 seconds for different concentrations of analytes deposited on conducting glass slides. Using AESD RS, SERS signals were collected within 4-6 minutes, including sample preparation. Transmission electron microscopy (TEM) and dark-field microscopy (DFM) were used to characterize the preformed AgNPs before and after electrospray. We achieved the nanomolar and micromolar detection of p-mercaptobenzoic acid (p-MBA) and 2,4-dinitrotoluene (2,4-DNT), respectively. In this work, 0.3 µL of preformed AgNPs were used, which is ∼33 times less in volume than the quantity needed for conventional SERS. Quantitation of unknown concentration of analytes was also possible. A similar amount of electrosprayed AgNPs was utilized to characterize Escherichia coli (E. coli) bacteria of different concentrations. Viability of bacteria was tested using fluorescence microscopic imaging. Besides reduced analysis time and improved reproducibility of the data in every analysis, which is generally difficult in SERS, the amount of AgNPs required is an order of magnitude lower in this method. This method could also be used to probe the real-time changes in molecular and biological species under ambient conditions.

2.
Nanoscale ; 15(28): 12123, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37432666

RESUMO

Correction for 'Secondary ligand-induced orthogonal self-assembly of silver nanoclusters into superstructures with enhanced NIR emission' by Korath Shivan Sugi, et al., Nanoscale, 2023, https://doi.org/10.1039/d3nr02561f.

3.
Nanoscale ; 15(28): 11927-11934, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37381785

RESUMO

Orthogonal self-assembly is one of the crucial strategies for forming complex and hierarchical structures in biological systems. However, creating such ordered complex structures using synthetic nanoparticles is a challenging task and requires a high degree of control over structure and multiple non-covalent interactions. In this context, nanoarchitectonics serves as an emerging tool to fabricate complex functional materials. Here, we present a secondary ligand-induced orthogonal self-assembly of atomically precise silver nanoclusters into complex superstructures. Specifically, we use Ag14NCs protected with naphthalene thiol and 1,6-bis(diphenylphosphino)hexane ligands. Controlled addition of 1,6-bis(diphenylphosphino)hexane, the secondary ligand resulted in a self-assembled supracolloidal structure including helical fibers, spheres, and nanosheets. The self-assembly process is tunable by controlling the molar ratio of the ligand. The resulting superstructures exhibit enhanced NIR emission due to restricted intramolecular motion. This demonstrates that by tuning supramolecular interactions, hierarchical nanostructures with desired properties similar to biomolecules can be obtained from atomically precise building blocks.

4.
Nanoscale ; 13(21): 9788-9797, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34028474

RESUMO

We report a hybrid material in which surface anchoring-induced enhanced luminescence of AuQC@BSA clusters on high surface area dendritic fibrous nanosilica of 800 nm diameter enabled their luminescence imaging at a single particle level. The photophysical and structural properties of the hybrid material were characterized by various spectroscopic and microscopic techniques. Concomitant imaging using scattering and luminescence of such mesostructures and their response to analytes have been used to develop a chemical sensor. The hybrid material was found to be catalytically active in silane to silanol conversion, and 100% conversion was observed in 4 h when the reaction was carried out at 30 °C in the presence of light. Such materials at submicron dimensions with enhanced surface area, emission in the solid state along with a high quantum yield of 12% in water along with enhanced scattering, and surface functionalities present numerous benefits for the creation of multifunctional materials.

5.
Nanoscale ; 12(43): 22116-22128, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33118573

RESUMO

Reactions between atomically precise noble metal nanoclusters (NCs) have been studied widely in the recent past, but such processes between NCs and plasmonic nanoparticles (NPs) have not been explored earlier. For the first time, we demonstrate spontaneous reactions between an atomically precise NC, Au25(PET)18 (PET = 2-phenylethanethiol), and polydispersed silver NPs with an average diameter of 4 nm and protected with PET, resulting in alloy NPs under ambient conditions. These reactions were specific to the nature of the protecting ligands as no reaction was observed between the Au25(SBB)18 NC (SBB = 4-(tert-butyl)benzyl mercaptan) and the very same silver NPs. The mechanism involves an interparticle exchange of the metal and ligand species where the metal-ligand interface plays a vital role in controlling the reaction. The reaction proceeds through transient Au25-xAgx(PET)n alloy cluster intermediates as observed in time-dependent electrospray ionization mass spectrometry (ESI MS). High-resolution transmission electron microscopy (HRTEM) analysis of the resulting dispersion showed the transformation of polydispersed silver NPs into highly monodisperse gold-silver alloy NPs which assembled to form 2-dimensional superlattices. Using NPs of other average sizes (3 and 8 nm), we demonstrated that size plays an important role in the reactivity as observed in ESI MS and HRTEM.

6.
ACS Appl Mater Interfaces ; 11(31): 28154-28163, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298516

RESUMO

A simple, one-step electrodeposition approach has been used to fabricate MnOx on an indium-doped tin oxide substrate for highly sensitive As3+ detection. We report an experimental limit of detection of 1 ppb through anodic stripping voltammetry with selectivity to As3+ in the presence of 10 times higher concentrations of several metal ions. Additionally, we report the simultaneous phase evolution of active material occurring through multiple stripping cycles, wherein MnO/Mn2O3 eventually converts to Mn3O4 as a result of change in the oxidation states of manganese. This occurs with concomitant changes in morphology. Change in the electronic property (increased charge transfer resistance) of the material due to sensing results in an eventual decrease in sensitivity after multiple stripping cycles. In a nutshell, this paper reports stripping-voltammetry-induced change in morphology and phase of as-prepared Mn-based electrodes during As sensing.

7.
Nanoscale ; 4(14): 4255-62, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22684267

RESUMO

We report the synthesis of luminescent AuAg alloy quantum clusters (QCs) in bovine serum albumin (BSA), for the first time, with experimentally determined atomic composition. Mixing of the as-synthesized protein-protected Au and Ag clusters resulted in the formation of alloy AuAg clusters within the BSA. Mass spectrometric analysis of the product of a 1 : 1 molar ratio reaction mixture of Au(QC)@BSA and Ag(QC)@BSA suggested that the alloy clusters could be Au(38-x)Ag(x)@BSA. Further analyses by standard techniques revealed that the alloy cluster core of ∼1.2 nm diameter is composed of nearly zero valent Au and Ag atoms that exhibit distinctly different steady state and time resolved excited state luminescence profiles compared to the parent clusters. Tuning of the alloy composition was achieved by varying the molar ratio of the parent species in the reaction mixture and compositional changes were observed by mass spectrometry. In another approach, mixing of Au(3+) ions with the as-synthesized Ag(QC)@BSA also resulted in the formation of alloy clusters through galvanic exchange reactions. We believe that alloy clusters with the combined properties of the constituents in versatile protein templates would have potential applications in the future. The work presents interesting aspects of the reactivity of the protein-protected clusters.


Assuntos
Ligas/química , Ouro/química , Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Prata/química , Animais , Bovinos , Dicroísmo Circular , Estrutura Secundária de Proteína , Teoria Quântica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA