Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 569(7757): 542-545, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118522

RESUMO

Amorphous water ice comes in at least three distinct structural forms, all lacking long-range crystalline order. High-density amorphous ice (HDA) was first produced by compressing ice I to 11 kilobar at temperatures below 130 kelvin, and the process was described as thermodynamic melting1, implying that HDA is a glassy state of water. This concept, and the ability to transform HDA reversibly into low-density amorphous ice, inspired the two-liquid water model, which relates the amorphous phases to two liquid waters in the deeply supercooled regime (below 228 kelvin) to explain many of the anomalies of water2 (such as density and heat capacity anomalies). However, HDA formation has also been ascribed3 to a mechanical instability causing structural collapse and associated with kinetics too sluggish for recrystallization to occur. This interpretation is supported by simulations3, analogy with a structurally similar system4, and the observation of lattice-vibration softening as ice is compressed5,6. It also agrees with recent observations of ice compression at higher temperatures-in the 'no man's land' regime, between 145 and 200 kelvin, where kinetics are faster-resulting in crystalline phases7,8. Here we further probe the role of kinetics and show that, if carried out slowly, compression of ice I even at 100 kelvin (a region in which HDA typically forms) gives proton-ordered, but non-interpenetrating, ice IX', then proton-ordered and interpenetrating ice XV', and finally ice VIII'. By contrast, fast compression yields HDA but no ice IX, and direct transformation of ice I to ice XV' is structurally inhibited. These observations suggest that HDA formation is a consequence of a kinetically arrested transformation between low-density ice I and high-density ice XV' and challenge theories that connect amorphous ice to supercooled liquid water.

2.
J Am Chem Soc ; 146(2): 1710-1721, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175928

RESUMO

The influence of the microstructure on the ionic conductivity and cell performance is a topic of broad scientific interest in solid-state batteries. The current understanding is that interfacial decomposition reactions during cycling induce local strain at the interfaces between solid electrolytes and the anode/cathode, as well as within the electrode composites. Characterizing the effects of internal strain on ion transport is particularly important, given the significant local chemomechanical effects caused by volumetric changes of the active materials during cycling. Here, we show the effects of internal strain on the bulk ionic transport of the argyrodite Li6PS5Br. Internal strain is reproducibly induced by applying pressures with values up to 10 GPa. An internal permanent strain is observed in the material, indicating long-range strain fields typical for dislocations. With increasing dislocation densities, an increase in the lithium ionic conductivity can be observed that extends into improved ionic transport in solid-state battery electrode composites. This work shows the potential of strain engineering as an additional approach for tuning ion conductors without changing the composition of the material itself.

3.
Phys Chem Chem Phys ; 25(21): 14981-14991, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37211856

RESUMO

From crystalline tetrahydrofuran clathrate hydrate, THF-CH (THF·17H2O, cubic structure II), three distinct polyamorphs can be derived. First, THF-CH undergoes pressure-induced amorphization when pressurized to 1.3 GPa in the temperature range 77-140 K to a form which, in analogy to pure ice, may be called high-density amorphous (HDA). Second, HDA can be converted to a densified form, VHDA, upon heat-cycling at 1.8 GPa to 180 K. Decompression of VHDA to atmospheric pressure below 130 K produces the third form, recovered amorphous (RA). Results from neutron scattering experiments and molecular dynamics simulations provide a generalized picture of the structure of amorphous THF hydrates with respect to crystalline THF-CH and liquid THF·17H2O solution (∼2.5 M). Although fully amorphous, HDA is heterogeneous with two length scales for water-water correlations (less dense local water structure) and guest-water correlations (denser THF hydration structure). The hydration structure of THF is influenced by guest-host hydrogen bonding. THF molecules maintain a quasiregular array, reminiscent of the crystalline state, and their hydration structure (out to 5 Å) constitutes ∼23H2O. The local water structure in HDA is reminiscent of pure HDA-ice featuring 5-coordinated H2O. In VHDA, the hydration structure of HDA is maintained but the local water structure is densified and resembles pure VHDA-ice with 6-coordinated H2O. The hydration structure of THF in RA constitutes ∼18 H2O molecules and the water structure corresponds to a strictly 4-coordinated network, as in the liquid. Both VHDA and RA can be considered as homogeneous.

4.
Inorg Chem ; 60(8): 6004-6015, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33788545

RESUMO

The AMnO2 delafossites (A = Na, Cu) are model frustrated antiferromagnets, with triangular layers of Mn3+ spins. At low temperatures (TN = 65 K), a C2/m → P1̅ transition is found in CuMnO2, which breaks frustration and establishes magnetic order. In contrast to this clean transition, A = Na only shows short-range distortions at TN. Here, we report a systematic crystallographic, spectroscopic, and theoretical investigation of CuMnO2. We show that, even in stoichiometric samples, nonzero anisotropic Cu displacements coexist with magnetic order. Using X-ray/neutron diffraction and Raman scattering, we show that high pressures act to decouple these degrees of freedom. This manifests as an isostuctural phase transition at ∼10 GPa, with a reversible collapse of the c-axis. This is shown to be the high-pressure analogue of the c-axis negative thermal expansion seen at ambient pressure. Density functional theory (DFT) simulations confirm that dynamical instabilities of the Cu+ cations and edge-shared MnO6 layers are intertwined at ambient pressure. However, high pressure selectively activates the former, before an eventual predicted reemergence of magnetism at the highest pressures. Our results show that the lattice dynamics and local structure of CuMnO2 are quantitatively different from nonmagnetic Cu delafossites and raise questions about the role of intrinsic inhomogeneity in frustrated antiferromagnets.

5.
J Am Chem Soc ; 142(41): 17662-17669, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32900188

RESUMO

Solid-state topochemical polymerization (SSTP) is a promising method to construct functional crystalline polymeric materials, but in contrast to various reactions that happen in solution, only very limited types of SSTP reactions are reported. Diels-Alder (DA) and dehydro-DA (DDA) reactions are textbook reactions for preparing six-membered rings in solution but are scarcely seen in solid-state synthesis. Here, using multiple cutting-edge techniques, we demonstrate that the solid 1,4-diphenylbutadiyne (DPB) undergoes a DDA reaction under 10-20 GPa with the phenyl as the dienophile. The crystal structure at the critical pressure shows that this reaction is "distance-selected". The distance of 3.2 Å between the phenyl and the phenylethynyl facilitates the DDA reaction, while the distances for other DDA and 1,4-addition reactions are too large to allow the bonding. The obtained products are crystalline armchair graphitic nanoribbons, and hence our studies open a new route to construct the crystalline carbon materials with atomic-scale control.

6.
Inorg Chem ; 59(19): 13979-13987, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32946229

RESUMO

Several II-IV double-ReO3-type (DROT) fluorides are known to exhibit strong negative thermal expansion (NTE) over a wide temperature range while retaining a cubic structure down to 120 K or lower. CaZrF6, CaNbF6, CaTiF6, and MgZrF6, embody these properties. In contrast to the behavior of these II-IV materials, the I-V DROT material, NaSbF6, has been reported to display a phase transition from rhombohedral to cubic above 300 K and positive thermal expansion both above and below the transition. In this work, NaNbF6 and NaTaF6 are shown to undergo first-order cubic-to-rhombohedral transitions on cooling to ∼130 K. Above this transition, NaNbF6 shows modest NTE between 160 and 250 K, whereas NaTaF6 exhibits near-zero thermal expansion over the range 210-270 K. These I-V systems are elastically softer than their II-IV counterparts, with a zero pressure bulk modulus, K0, of 14.6(8) GPa and first derivative of the bulk modulus with respect to pressure, K0', of -18(3) for cubic NaNbF6, and K0 = 14.47(3) GPa and K0'= -21.56(7) for cubic NaTaF6. When subject to ∼0.3 GPa at 300 K, both compounds exhibit a phase transition from Fm3̅m to R3̅. The R3̅ phases exhibit negative linear compressibility over a limited pressure range. A further transition with phase coexistence occurs at ∼2.5-3.0 GPa for NaNbF6 and ∼4.5 GPa for NaTaF6. Compression of NaNbF6 in helium at room temperature and below provides no evidence for helium penetration into the structure to form a perovskite with helium on the A-site, as was previously reported for CaZrF6.

7.
Phys Rev Lett ; 122(18): 187202, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144879

RESUMO

In the bulk, LaCoO_{3} (LCO) is a paramagnet, yet the low-temperature ferromagnetism (FM) is observed in tensile strained thin films, and its origin remains unresolved. Here, we quantitatively measured the distribution of atomic density and magnetization in LCO films by polarized neutron reflectometry (PNR) and found that the LCO layers near the heterointerfaces exhibit a reduced magnetization but an enhanced atomic density, whereas the film's interior (i.e., its film bulk) shows the opposite trend. We attribute the nonuniformity to the symmetry mismatch at the interface, which induces a structural distortion related to the ferroelasticity of LCO. This assertion is tested by systematic application of hydrostatic pressure during the PNR experiments. The magnetization can be controlled at a rate of -20.4% per GPa. These results provide unique insights into mechanisms driving FM in strained LCO films while offering a tantalizing observation that tunable deformation of the CoO_{6} octahedra in combination with the ferroelastic order parameter.

8.
J Am Chem Soc ; 139(38): 13284-13287, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28892378

RESUMO

Defect perovskites (He2-x□x)(CaZr)F6 can be prepared by inserting helium into CaZrF6 at high pressure. They can be recovered to ambient pressure at low temperature. There are no prior examples of perovskites with noble gases on the A-sites. The insertion of helium gas into CaZrF6 both elastically stiffens the material and reduces the magnitude of its negative thermal expansion. It also suppresses the onset of structural disorder, which is seen on compression in other media. Measurements of the gas released on warming to room temperature and Rietveld analyses of neutron diffraction data at low temperature indicate that exposure to helium gas at 500 MPa leads to a stoichiometry close to (He1□1)(CaZr)F6. Helium has a much higher solubility in CaZrF6 than silica glass or crystobalite. An analogue with composition (H2)2(CaZr)F6 would have a volumetric hydrogen storage capacity greater than current US DOE targets. We anticipate that other hybrid perovskites with small neutral molecules on the A-site can also be prepared and that they will display a rich structural chemistry.

9.
J Am Chem Soc ; 139(45): 16343-16349, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29040804

RESUMO

Synthesis of well-ordered reduced dimensional carbon solids with extended bonding remains a challenge. For example, few single-crystal organic monomers react under topochemical control to produce single-crystal extended solids. We report a mechanochemical synthesis in which slow compression at room temperature under uniaxial stress can convert polycrystalline or single-crystal benzene monomer into single-crystalline packings of carbon nanothreads, a one-dimensional sp3 carbon nanomaterial. The long-range order over hundreds of microns of these crystals allows them to readily exfoliate into fibers. The mechanochemical reaction produces macroscopic single crystals despite large dimensional changes caused by the formation of multiple strong, covalent C-C bonds to each monomer and a lack of reactant single-crystal order. Therefore, it appears not to follow a topochemical pathway, but rather one guided by uniaxial stress, to which the nanothreads consistently align. Slow-compression room-temperature synthesis may allow diverse molecular monomers to form single-crystalline packings of polymers, threads, and higher dimensional carbon networks.

10.
Angew Chem Int Ed Engl ; 56(23): 6553-6557, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28464355

RESUMO

Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Following this route produces a pure cis-isomer and more surprisingly, predicts that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure.

11.
Proc Natl Acad Sci U S A ; 110(26): 10552-6, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23757495

RESUMO

The motif of distinct H2O molecules in H-bonded networks is believed to persist up to the densest molecular phase of ice. At even higher pressures, where the molecule dissociates, it is generally assumed that the proton remains localized within these same networks. We report neutron-diffraction measurements on D2O that reveal the location of the D atoms directly up to 52 GPa, a pressure regime not previously accessible to this technique. The data show the onset of a structural change at ∼13 GPa and cannot be described by the conventional network structure of ice VII above ∼26 GPa. Our measurements are consistent with substantial deuteron density in the octahedral, interstitial voids of the oxygen lattice. The observation of this "interstitial" ice VII form provides a framework for understanding the evolution of hydrogen bonding in ice that contrasts with the conventional picture. It may also be a precursor for the superionic phase reported at even higher pressure with important consequences for our understanding of dense matter and planetary interiors.

12.
Angew Chem Int Ed Engl ; 55(39): 12040-4, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27561179

RESUMO

Acetonitrile (CH3 CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH⋅⋅⋅N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.

13.
Inorg Chem ; 54(23): 11276-82, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26575332

RESUMO

Pressure-induced polymerization of charged triple-bond monomers like acetylide and cyanide could lead to formation of a conductive metal-carbon network composite, thus providing a new route to synthesize inorganic/organic conductors with tunable composition and properties. The industry application of this promising synthetic method is mainly limited by the reaction pressure needed, which is often too high to be reached for gram amounts of sample. Here we successfully synthesized highly conductive Li3Fe(CN)6 at maximum pressure around 5 GPa and used in situ diagnostic tools to follow the structural and functional transformations of the sample, including in situ X-ray and neutron diffraction and Raman and impedance spectroscopy, along with the neutron pair distribution function measurement on the recovered sample. The cyanide anions start to react around 1 GPa and bond to each other irreversibly at around 5 GPa, which are the lowest reaction pressures in all known metal cyanides and within the technologically achievable pressure range for industrial production. The conductivity of the polymer is above 10(-3) S · cm(-1), which reaches the range of conductive polymers. This investigation suggests that the pressure-induced polymerization route is practicable for synthesizing some types of functional conductive materials for industrial use, and further research like doping and heating can hence be motivated to synthesize novel materials under lower pressure and with better performances.

14.
Rev Sci Instrum ; 92(9): 093903, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598490

RESUMO

A design for an incident-beam collimator for the Paris-Edinburgh pressure cell is described here. This design can be fabricated from reaction-bonded B4C but also through fast turnaround, inexpensive 3D-printing. 3D-printing thereby also offers the opportunity of composite collimators whereby the tip closest to the sample can exhibit even better neutronic characteristics. Here, we characterize four such collimators: one from reaction-bonded B4C, one 3D-printed and fully infiltrated with cyanoacrylate, a glue, one with a glue-free tip, and one with a tip made from enriched 10B4C. The collimators are evaluated on the Spallation Neutrons and Pressure Diffractometer of the Spallation Neutron Source and the Wide-Angle Neutron Diffractometer at the High Flux Isotope Reactor, both at Oak Ridge National Laboratory. This work clearly shows that 3D-printed collimators perform well and also that composite collimators improve performance even further. Beyond use in the Paris-Edinburgh cell, these findings also open new avenues for collimator designs as clearly more complex shapes are possible through 3D printing. An example of such is shown here with a collimator made for single-crystal samples measured inside a diamond anvil cell. These developments are expected to be highly advantageous for future experimentation in high pressure and other extreme environments and even for the design and deployment of new neutron scattering instruments.

15.
RSC Adv ; 11(49): 30744-30754, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35479871

RESUMO

Three amorphous forms of Ar hydrate were produced using the crystalline clathrate hydrate Ar·6.5H2O (structure II, Fd3̄m, a ≈ 17.1 Å) as a precursor and structurally characterized by a combination of isotope substitution (36Ar) neutron diffraction and molecular dynamics (MD) simulations. The first form followed from the pressure-induced amorphization of the precursor at 1.5 GPa at 95 K and the second from isobaric annealing at 2 GPa and subsequent cooling back to 95 K. In analogy to amorphous ice, these amorphs are termed high-density amorphous (HDA) and very-high-density amorphous (VHDA), respectively. The third amorph (recovered amorphous, RA) was obtained when recovering VHDA to ambient pressure (at 95 K). The three amorphs have distinctly different structures. In HDA the distinction of the original two crystallographically different Ar guests is maintained as differently dense Ar-water hydration structures, which expresses itself in a split first diffraction peak in the neutron structure factor function. Relaxation of the local water structure during annealing produces a homogeneous hydration environment around Ar, which is accompanied with a densification by about 3%. Upon pressure release the homogeneous amorphous structure undergoes expansion by about 21%. Both VHDA and RA can be considered frozen solutions of immiscible Ar and water in which in average 15 and 11 water molecules, respectively, coordinate Ar out to 4 Å. The local water structures of HDA and VHDA Ar hydrates show some analogy to those of the corresponding amorphous ices, featuring H2O molecules in 5- and 6-fold coordination with neighboring molecules. However, they are considerably less dense. Most similarity is seen between RA and low density amorphous ice (LDA), which both feature strictly 4-coordinated H2O networks. It is inferred that, depending on the kind of clathrate structure and occupancy of cages, amorphous states produced from clathrate hydrates display variable local water structures.

16.
Adv Mater ; 31(23): e1807334, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30985035

RESUMO

The first experimental evidence for a giant, conventional barocaloric effect (BCE) associated with a pressure-driven spin crossover transition near room temperature is provided. Magnetometry, neutron scattering, and calorimetry are used to explore the pressure dependence of the SCO phase transition in polycrystalline samples of protonated and partially deuterated [FeL2 ][BF4 ]2 [L = 2,6-di(pyrazol-1-yl)pyridine] at applied pressures of up to 120 MPa (1200 bar). The data indicate that, for a pressure change of only 0-300 bar (0-30 MPa), an adiabatic temperature change of 3 K is observed at 262 K or 257 K in the protonated and deuterated materials, respectively. This BCE is equivalent to the magnetocaloric effect (MCE) observed in gadolinium in a magnetic field change of 0-1 Tesla. The work confirms recent predictions that giant, conventional BCEs will be found in a wide range of SCO compounds.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33134793

RESUMO

Responding to the rapidly increasing demand for efficient energy usage and increased speed and functionality of electronic and spintronic devices, multiferroic oxides have recently emerged as key materials capable of tackling this multifaceted challenge. In this paper, we describe the development of single-site manganese-based multiferroic perovskite materials with modest amounts of nonmagnetic Ti substituted at the magnetic Mn site in Sr1- x Ba x Mn1- y Ti y O3 (SBMTO). Significantly enhanced properties were achieved with ferroelectric-type structural transition temperatures boosted to ∼430K. Ferroelectric distortions with large spontaneous polarization values of ∼30µC/cm2, derived from a point charge model, are similar in magnitude to those of the prototypical nonmagnetic BaTiO3. Temperature dependence of the system's properties was investigated by synchrotron x-ray powder diffraction and neutron powder diffraction at ambient and high pressures. Various relationships were determined between the structural and magnetic properties, Ba and Ti contents, and T N and T C. Most importantly, our results demonstrate the large coupling between the magnetic and ferroelectric order parameters and the wide tunability of this coupling by slight variations of the material's stoichiometry.

18.
Sci Rep ; 8(1): 15520, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341340

RESUMO

At ambient pressure, the hydrogen bond in materials such as ice, hydrates, and hydrous minerals that compose the Earth and icy planets generally takes an asymmetric O-H···O configuration. Pressure significantly affects this configuration, and it is predicted to become symmetric, such that the hydrogen is centered between the two oxygen atoms at high pressure. Changes of physical properties of minerals relevant to this symmetrization have been found; however, the atomic configuration around this symmetrization has remained elusive so far. Here we observed the pressure response of the hydrogen bonds in the aluminous hydrous minerals δ-AlOOH and δ-AlOOD by means of a neutron diffraction experiment. We find that the transition from P21nm to Pnnm at 9.0 GPa, accompanied by a change in the axial ratios of δ-AlOOH, corresponds to the disorder of hydrogen bond between two equivalent sites across the center of the O···O line. Symmetrization of the hydrogen bond is observed at 18.1 GPa, which is considerably higher than the disorder pressure. Moreover, there is a significant isotope effect on hydrogen bond geometry and transition pressure. This study indicates that disorder of the hydrogen bond as a precursor of symmetrization may also play an important role in determining the physical properties of minerals such as bulk modulus and seismic wave velocities in the Earth's mantle.

19.
Rev Sci Instrum ; 89(9): 092902, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278728

RESUMO

A diamond cell optimized for single-crystal neutron diffraction is described. It is adapted for work at several of the single-crystal diffractometers of the Spallation Neutron Source and the High Flux Isotope Reactor at the Oak Ridge National Laboratory (ORNL). A simple spring design improves portability across the facilities and affords load maintenance from offline pressurization and during temperature cycling. Compared to earlier prototypes, pressure stability of polycrystalline diamond (Versimax®) has been increased through double-conical designs and ease of use has been improved through changes to seat and piston setups. These anvils allow ∼30%-40% taller samples than possible with comparable single-crystal anvils. Hydrostaticity and the important absence of shear pressure gradients have been established with the use of glycerin as a pressure medium. Large single-crystal synthetic diamonds have also been used for the first time with such a clamp-diamond anvil cell for pressures close to 20 GPa. The cell is made from a copper beryllium alloy and sized to fit into ORNL's magnets for future ultra-low temperature and high-field studies. We show examples from the Spallation Neutron Source's SNAP and CORELLI beamlines and the High Flux Isotope Reactor's HB-3A and IMAGINE beamlines.

20.
J Phys Chem Lett ; 8(8): 1856-1864, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28395511

RESUMO

The enormous versatility in the properties of carbon materials depends on the content of the sp2 and sp3 covalent bonds. Under compression, if intermolecular distances cross a critical threshold, then unsaturated hydrocarbons gradually transform to saturated carbon polymers. However, the mechanism of polymerization, even for benzene, the simplest aromatic hydrocarbon, is still not understood. We used high-pressure synchrotron X-ray, neutron diffraction, and micro-Raman spectroscopy together with density functional calculations to investigate the isotope effects in benzene isotopologues C6H6 and C6D6 up to 46.0 GPa. Raman spectra of polymeric products recovered from comparable pressures show the progression of polymerization exhibiting a pronounced kinetic isotope effect. Kinetically retarded reactions in C6D6 shed light on the mechanism of polymerization of benzene. We find that C6D6-derived products recovered from P < 35 GPa actively react with moisture, forming polymers with higher sp3 hydrogen contents. Significant isotopic shift (≥7 GPa) in persistence of Bragg reflections of C6D6 is observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA