Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
New Phytol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103987

RESUMO

Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long-term warming. Here, we conducted a meta-analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases - leaf-out, first flowering, last flowering, and leaf coloring. We showed that warming advanced leaf-out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf-out and leaf coloring for woody species, decreased as the experimental duration extended. Together, these results suggest that the real-world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.

2.
Nature ; 562(7725): 57-62, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258229

RESUMO

The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.


Assuntos
Aquecimento Global , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Tundra , Biometria , Mapeamento Geográfico , Umidade , Fenótipo , Solo/química , Análise Espaço-Temporal , Temperatura , Água/análise
3.
Am J Bot ; 108(3): 411-422, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33792046

RESUMO

PREMISE: Climate change is having major impacts on alpine and arctic regions, and inter-annual variations in temperature are likely to increase. How increased climate variability will impact plant reproduction is unclear. METHODS: In a 4-year study on fruit production by an alpine plant community in northern Sweden, we applied three warming regimes: (1) a static level of warming with open-top chambers (OTC), (2) press warming, a yearly stepwise increase in warming, and (3) pulse warming, a single-year pulse event of higher warming. We analyzed the relationship between fruit production and monthly temperatures during the budding period, fruiting period, and whole fruit production period and the effect of winter and summer precipitation on fruit production. RESULTS: Year and treatment had a significant effect on total fruit production by evergreen shrubs, Cassiope tetragona, and Dryas octopetala, with large variations between treatments and years. Year, but not treatment, had a significant effect on deciduous shrubs and graminoids, both of which increased fruit production over the 4 years, while forbs were negatively affected by the press warming, but not by year. Fruit production was influenced by ambient temperature during the previous-year budding period, current-year fruiting period, and whole fruit production period. Minimum and average temperatures were more important than maximum temperature. In general, fruit production was negatively correlated with increased precipitation. CONCLUSIONS: These results indicate that predicted increased climate variability and increased precipitation due to climate change may affect plant reproductive output and long-term community dynamics in alpine meadow communities.


Assuntos
Frutas , Pradaria , Regiões Árticas , Mudança Climática , Suécia , Temperatura
4.
Proc Natl Acad Sci U S A ; 112(2): 448-52, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548195

RESUMO

Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming.


Assuntos
Mudança Climática , Monitorização de Parâmetros Ecológicos/métodos , Plantas , Biodiversidade , Ecossistema , Aquecimento Global , Fenômenos Fisiológicos Vegetais
5.
Glob Chang Biol ; 23(7): 2660-2671, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28079308

RESUMO

Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms.


Assuntos
Mudança Climática , Desenvolvimento Vegetal , Temperatura , Temperatura Baixa , Estações do Ano , Tundra
6.
Ann Bot ; 120(1): 159-170, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28651333

RESUMO

Background and Aims: Climate change is expected to have major impacts on high alpine and arctic ecosystems in the future, but empirical data on the impact of long-term warming on lichen diversity and richness are sparse. This study report the effects of 18 years of ambient and experimental warming on lichens and vascular plant cover in two alpine plant communities, a dry heath with sparse canopy cover (54 %) and a mesic meadow with a more developed (67 %) canopy cover, in sub-arctic Sweden. Methods: The effects of long-term passive experimental warming using open top chambers (OTCs) on lichens and total vascular plant cover, and the impact of plant cover on lichen community parameters, were analysed. Key Results: Between 1993 and 2013, mean annual temperature increased about 2 °C. Both site and experimental warming had a significant effect on cover, species richness, effective number of species evenness of lichens, and total plant canopy cover. Lichen cover increased in the heath under ambient conditions, and remained more stable under experimental warming. The negative effect on species richness and effective number of species was driven by a decrease in lichens under experimental warming in the meadow. Lichen cover, species richness, effective number of species evenness were negatively correlated with plant canopy cover. There was a significant negative impact on one species and a non-significant tendency of lower abundance of the most common species in response to experimental warming. Conclusions: The results from the long-term warming study imply that arctic and high alpine lichen communities are likely to be negatively affected by climate change and an increase in plant canopy cover. Both biotic and abiotic factors are thus important for future impacts of climate change on lichens.


Assuntos
Mudança Climática , Ecossistema , Líquens/fisiologia , Regiões Árticas , Plantas , Suécia
7.
Ecol Lett ; 15(2): 164-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22136670

RESUMO

Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.


Assuntos
Adaptação Biológica , Ecossistema , Aquecimento Global , Desenvolvimento Vegetal , Regiões Árticas , Biodiversidade , Modelos Biológicos
8.
Sci Total Environ ; 836: 155450, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35490820

RESUMO

Alpine and polar regions are predicted to be among the most vulnerable to changes in temperature, precipitation, and nutrient availability. We carried out a seven-year factorial experiment with warming and nutrient addition in two alpine vegetation communities. We analyzed the relationship between fruit production and monthly mean, maximum, and min temperatures during the fall of the pre-fruiting year, the fruiting summer, and the whole fruit production period, and measured the effects of precipitation and growing and thawing degree days (GDD & TDD) on fruit production. Nutrient addition (heath: 27.88 ± 3.19 fold change at the end of the experiment; meadow: 18.02 ± 4.07) and combined nutrient addition and warming (heath: 20.63 ± 29.34 fold change at the end of the experiment; meadow: 18.21 ± 16.28) increased total fruit production and fruit production of graminoids. Fruit production of evergreen and deciduous shrubs fluctuated among the treatments and years in both the heath and meadow. Pre-maximum temperatures had a negative effect on fruit production in both communities, while current year maximum temperatures had a positive impact on fruit production in the meadow. Pre-minimum, pre-mean, current mean, total minimum, and total mean temperatures were all positively correlated with fruit production in the meadow. The current year and total precipitation had a negative effect on the fruit production of deciduous shrubs in the heath. GDD had a positive effect on fruit production in both communities, while TDD only impacted fruit production in the meadow. Increased nutrient availability increased fruit production over time in the high alpine plant communities, while experimental warming had either no effect or a negative effect. Deciduous shrubs were the most sensitive to climate parameters in both communities, and the meadow was more sensitive than the heath. The difference in importance of TDD for fruit production may be due to differences in snow cover in the two communities.


Assuntos
Ecossistema , Pradaria , Mudança Climática , Frutas , Nutrientes , Temperatura
9.
Nat Commun ; 12(1): 3442, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117253

RESUMO

Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.


Assuntos
Fenômenos Fisiológicos Vegetais , Plantas , Reprodução/fisiologia , Tundra , Regiões Árticas , Clima , Ecossistema , Flores , Modelos Biológicos , Fenótipo , Plantas/genética , Estações do Ano , Análise Espaço-Temporal , Temperatura
10.
Sci Total Environ ; 724: 138304, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32408462

RESUMO

AIMS: Litter decomposition is an important driver of soil carbon and nutrient cycling in nutrient-limited Arctic ecosystems. However, climate change is expected to induce changes that directly or indirectly affect decomposition. We examined the direct effects of long-term warming relative to differences in soil abiotic properties associated with vegetation type on litter decomposition across six subarctic vegetation types. METHODS: In six vegetation types, rooibos and green tea bags were buried for 70-75 days at 8 cm depth inside warmed (by open-top chambers) and control plots that had been in place for 20-25 years. Standardized initial decomposition rate and stabilization of the labile material fraction of tea (into less decomposable material) were calculated from tea mass losses. Soil moisture and temperature were measured bi-weekly during summer and plant-available nutrients were measured with resin probes. RESULTS: Initial decomposition rate was decreased by the warming treatment. Stabilization was less affected by warming and determined by vegetation type and soil moisture. Soil metal concentrations impeded both initial decomposition rate and stabilization. CONCLUSIONS: While a warmer Arctic climate will likely have direct effects on initial litter decomposition rates in tundra, stabilization of organic matter was more affected by vegetation type and soil parameters and less prone to be affected by direct effects of warming.


Assuntos
Ecossistema , Tundra , Regiões Árticas , Mudança Climática , Solo
11.
AoB Plants ; 12(6): plaa061, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33408847

RESUMO

Climate change is expected to affect alpine and Arctic tundra communities. Most previous long-term studies have focused on impacts on vascular plants, this study examined impacts of long-term warming on bryophyte communities. Experimental warming with open-top chambers (OTCs) was applied for 18 years to a mesic meadow and a dry heath alpine plant community. Species abundance was measured in 1995, 1999, 2001 and 2013. Species composition changed significantly from original communities in the heath, but remained similar in mesic meadow. Experimental warming increased beta diversity in the heath. Bryophyte cover and species richness both declined with long-term warming, while Simpson diversity showed no significant responses. Over the 18-year period, bryophyte cover in warmed plots decreased from 43 % to 11 % in heath and from 68 % to 35 % in meadow (75 % and 48 % decline, respectively, in original cover), while richness declined by 39 % and 26 %, respectively. Importantly, the decline in cover and richness first emerged after 7 years. Warming caused significant increase in litter in both plant communities. Deciduous shrub and litter cover had negative impact on bryophyte cover. We show that bryophyte species do not respond similarly to climate change. Total bryophyte cover declined in both heath and mesic meadow under experimental long-term warming (by 1.5-3 °C), driven by general declines in many species. Principal response curve, cover and richness results suggested that bryophytes in alpine heath are more susceptible to warming than in meadow, supporting the suggestion that bryophytes may be less resistant in drier environments than in wetter habitats. Species loss was slower than the decline in bryophyte abundance, and diversity remained similar in both communities. Increased deciduous shrub and litter cover led to decline in bryophyte cover. The non-linear response to warming over time underlines the importance of long-term experiments and monitoring.

12.
Oecologia ; 161(3): 601-10, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19554352

RESUMO

Climate change was simulated by increasing temperature and nutrient availability in an alpine landscape. We conducted a field experiment of BACI-design (before/after control/impact) running for five seasons in two alpine communities (heath and meadow) with the factors temperature (increase of ca. 1.5-3.0 degrees C) and nutrients (5 g N, 5 g P per m(2)) in a fully factorial design in northern Swedish Lapland. The response variables were abundances of plant species and functional types. Plant community responses to the experimental perturbations were investigated, and the responses of plant functional types were examined in comparison to responses at the species level. Nutrient addition, exclusively and in combination with enhanced temperature increase, exerted the most pronounced responses at the species-specific and community levels. The main responses to nutrient addition were increases in graminoids and forbs, whereas deciduous shrubs, evergreen shrubs, bryophytes, and lichens decreased. The two plant communities of heath or meadow showed different vegetation responses to the environmental treatments despite the fact that both communities were located on the same subarctic-alpine site. Furthermore, we showed that the abundance of forbs increased in response to the combined treatment of temperature and nutrient addition in the meadow plant community. Within a single-plant functional type, most species responded similarly to the enhanced treatments although there were exceptions, particularly in the moss and lichen functional types. Plant community structure showed BACI responses in that vegetation dominance relationships in the existing plant functional types changed to varying degrees in all plots, including control plots. Betula nana and lichens increased in the temperature-increased enhancements and in control plots in the heath plant community during the treatment period. The increases in control plots were probably a response to the observed warming during the treatment period in the region.


Assuntos
Clima , Ecossistema , Desenvolvimento Vegetal , Fertilizantes , Especificidade da Espécie , Estatísticas não Paramétricas , Suécia , Temperatura
14.
Nat Ecol Evol ; 3(1): 45-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30532048

RESUMO

Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes.


Assuntos
Mudança Climática , Flores/crescimento & desenvolvimento , Estações do Ano , Temperatura , Desenvolvimento Vegetal , Tundra
15.
Ecol Lett ; 10(7): 619-27, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17542940

RESUMO

Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.


Assuntos
Clima Frio , Ecossistema , Efeito Estufa , Modelos Biológicos , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Análise de Variância , Carbono/química , Plantas/metabolismo , Especificidade da Espécie , Suécia
16.
Sci Rep ; 7(1): 2571, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566722

RESUMO

To improve understanding of how global warming may affect competitive interactions among plants, information on the responses of plant functional traits across species to long-term warming is needed. Here we report the effect of 23 years of experimental warming on plant traits across four different alpine subarctic plant communities: tussock tundra, Dryas heath, dry heath and wet meadow. Open-top chambers (OTCs) were used to passively warm the vegetation by 1.5-3 °C. Changes in leaf width, leaf length and plant height of 22 vascular plant species were measured. Long-term warming significantly affected all plant traits. Overall, plant species were taller, with longer and wider leaves, compared with control plots, indicating an increase in biomass in warmed plots, with 13 species having significant increases in at least one trait and only three species having negative responses. The response varied among species and plant community in which the species was sampled, indicating community-warming interactions. Thus, plant trait responses are both species- and community-specific. Importantly, we show that there is likely to be great variation between plant species in their ability to maintain positive growth responses over the longer term, which might cause shifts in their relative competitive ability.


Assuntos
Aquecimento Global , Folhas de Planta/crescimento & desenvolvimento , Fenômenos Fisiológicos Vegetais , Plantas , Biomassa , Clima , Ecossistema , Especificidade da Espécie , Temperatura , Tundra
17.
J Ecol ; 105(6): 1547-1561, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29200500

RESUMO

One of the most palpable effects of warming in Arctic ecosystems is shrub expansion above the tree line. However, previous studies have found that reindeer can influence plant community responses to warming and inhibit shrubification of the tundra.We revisited grazed (ambient) and ungrazed study plots (exclosures), at the southern as well as the northern limits of the Swedish alpine region, to study long-term grazing effects and vegetation changes in response to increasing temperatures between 1995 and 2011, in two vegetation types (shrub heath and mountain birch forest).In the field layer at the shrub heath sites, evergreen dwarf shrubs had increased in cover from 26% to 49% but were unaffected by grazing. Deciduous dwarf and tall shrubs also showed significant, though smaller, increases over time. At the birch forest sites, the increase was similar for evergreen dwarf shrubs (20-48%) but deciduous tall shrubs did not show the same consistent increase over time as in the shrub heath.The cover and height of the shrub layer were significantly greater in exclosures at the shrub heath sites, but no significant treatment effects were found on species richness or diversity.July soil temperatures and growing season thawing degree days (TDD) were higher in exclosures at all but one site, and there was a significant negative correlation between mean shrub layer height and soil TDD at the shrub heath sites. Synthesis. This study shows that shrub expansion is occurring rapidly in the Scandes mountain range, both above and below the tree line. Tall, deciduous shrubs had benefitted significantly from grazing exclosure, both in terms of cover and height, which in turn lowered summer soil temperatures. However, the overriding vegetation shift across our sites was the striking increase in evergreen dwarf shrubs, which were not influenced by grazing. As the effects of an increase in evergreen dwarf shrubs and more recalcitrant plant litter may to some degree counteract some of the effects of an increase in deciduous tall shrubs, herbivore influence on shrub interactions is potentially of great importance for shaping arctic shrub expansion and its associated ecosystem effects.

18.
Sci Rep ; 6: 21720, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26888225

RESUMO

Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity.


Assuntos
Adaptação Biológica , Pradaria , Mudança Climática , Desenvolvimento Vegetal
19.
Sci Rep ; 5: 10197, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25950370

RESUMO

Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment.


Assuntos
Biodiversidade , Ecossistema , Plantas , Regiões Árticas , Densidade Demográfica
20.
Oecologia ; 81(2): 181-185, 1989 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28312535

RESUMO

A northern Swedish population of Bartsia alpina, an arctic-alpine perennial herb, was found to suffer high levels of predispersal seed predation by larvae of two insect species, both specialists on rhinanthoid Scrophulariaceae hosts. The primary predator is Aethes deutschiana (Lepidoptera-Tortricidae), the host of which was previously unknown. The other predator is Gimnomera dorsata (Diptera-Scatophagidae), which is basically a Pedicularis specialist. Both predators are attacked by larvae of Scambus brevicorais (Hymenoptera-Parasitica-Ichneumonidae). Total predation pressure was more or less constant during 1985-1987, but in 1988 the level was doubled, the possible reasons of which are discussed. Large inflorescences of B. alpina suffer significantly higher predation pressures than small ones. It is shown that predation is most intense in the middle of the inflorescences. The same floral nodes are known to produce more selfed seeds than distal and basal nodes. Seed predation in B. alpina thus results in an increased proportion of outcrossed seeds entering the seed pool. Selection pressures on host plant and predator fauna are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA