Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nature ; 592(7852): 70-75, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790444

RESUMO

Much of the current volume of Earth's continental crust had formed by the end of the Archaean eon1 (2.5 billion years ago), through melting of hydrated basaltic rocks at depths of approximately 25-50 kilometres, forming sodic granites of the tonalite-trondhjemite-granodiorite (TTG) suite2-6. However, the geodynamic setting and processes involved are debated, with fundamental questions arising, such as how and from where the required water was added to deep-crustal TTG source regions7,8. In addition, there have been no reports of voluminous, homogeneous, basaltic sequences in preserved Archaean crust that are enriched enough in incompatible trace elements to be viable TTG sources5,9. Here we use variations in the oxygen isotope composition of zircon, coupled with whole-rock geochemistry, to identify two distinct groups of TTG. Strongly sodic TTGs represent the most-primitive magmas and contain zircon with oxygen isotope compositions that reflect source rocks that had been hydrated by primordial mantle-derived water. These primitive TTGs do not require a source highly enriched in incompatible trace elements, as 'average' TTG does. By contrast, less sodic 'evolved' TTGs require a source that is enriched in both water derived from the hydrosphere and also incompatible trace elements, which are linked to the introduction of hydrated magmas (sanukitoids) formed by melting of metasomatized mantle lithosphere. By concentrating on data from the Palaeoarchaean crust of the Pilbara Craton, we can discount a subduction setting6,10-13, and instead propose that hydrated and enriched near-surface basaltic rocks were introduced into the mantle through density-driven convective overturn of the crust. These results remove many of the paradoxical impediments to understanding early continental crust formation. Our work suggests that sufficient primordial water was already present in Earth's early mafic crust to produce the primitive nuclei of the continents, with additional hydrated sources created through dynamic processes that are unique to the early Earth.

2.
Am J Hum Genet ; 108(9): 1590-1610, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34390653

RESUMO

Our study investigated the underlying mechanism for the 14q24 renal cell carcinoma (RCC) susceptibility risk locus identified by a genome-wide association study (GWAS). The sentinel single-nucleotide polymorphism (SNP), rs4903064, at 14q24 confers an allele-specific effect on expression of the double PHD fingers 3 (DPF3) of the BAF SWI/SNF complex as assessed by massively parallel reporter assay, confirmatory luciferase assays, and eQTL analyses. Overexpression of DPF3 in renal cell lines increases growth rates and alters chromatin accessibility and gene expression, leading to inhibition of apoptosis and activation of oncogenic pathways. siRNA interference of multiple DPF3-deregulated genes reduces growth. Our results indicate that germline variation in DPF3, a component of the BAF complex, part of the SWI/SNF complexes, can lead to reduced apoptosis and activation of the STAT3 pathway, both critical in RCC carcinogenesis. In addition, we show that altered DPF3 expression in the 14q24 RCC locus could influence the effectiveness of immunotherapy treatment for RCC by regulating tumor cytokine secretion and immune cell activation.


Assuntos
Carcinoma de Células Renais/genética , Cromossomos Humanos Par 14 , Proteínas de Ligação a DNA/genética , Loci Gênicos , Neoplasias Renais/genética , Fator de Transcrição STAT3/genética , Fatores de Transcrição/genética , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Linhagem Celular Tumoral , Cromatina/química , Cromatina/imunologia , Montagem e Desmontagem da Cromatina/imunologia , Citocinas/genética , Citocinas/imunologia , Proteínas de Ligação a DNA/imunologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoterapia/métodos , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Polimorfismo de Nucleotídeo Único , Fator de Transcrição STAT3/imunologia , Linfócitos T Citotóxicos , Fatores de Transcrição/imunologia
3.
J Biol Chem ; 295(13): 4065-4078, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31690629

RESUMO

Hypoxia-inducible transcription factors (HIFs) directly dictate the expression of multiple RNA species including novel and as yet uncharacterized long noncoding transcripts with unknown function. We used pan-genomic HIF-binding and transcriptomic data to identify a novel long noncoding RNA Noncoding Intergenic Co-Induced transcript (NICI) on chromosome 12p13.31 which is regulated by hypoxia via HIF-1 promoter-binding in multiple cell types. CRISPR/Cas9-mediated deletion of the hypoxia-response element revealed co-regulation of NICI and the neighboring protein-coding gene, solute carrier family 2 member 3 (SLC2A3) which encodes the high-affinity glucose transporter 3 (GLUT3). Knockdown or knockout of NICI attenuated hypoxic induction of SLC2A3, indicating a direct regulatory role of NICI in SLC2A3 expression, which was further evidenced by CRISPR/Cas9-VPR-mediated activation of NICI expression. We also demonstrate that regulation of SLC2A3 is mediated through transcriptional activation rather than posttranscriptional mechanisms because knockout of NICI leads to reduced recruitment of RNA polymerase 2 to the SLC2A3 promoter. Consistent with this we observe NICI-dependent regulation of glucose consumption and cell proliferation. Furthermore, NICI expression is regulated by the von Hippel-Lindau (VHL) tumor suppressor and is highly expressed in clear cell renal cell carcinoma (ccRCC), where SLC2A3 expression is associated with patient prognosis, implying an important role for the HIF/NICI/SLC2A3 axis in this malignancy.


Assuntos
Carcinoma de Células Renais/genética , Transportador de Glucose Tipo 3/genética , RNA Longo não Codificante/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Sistemas CRISPR-Cas/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Inativação de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , Ativação Transcricional/genética , Hipóxia Tumoral/genética
4.
J Hepatol ; 75(1): 64-73, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33516779

RESUMO

BACKGROUND & AIMS: Hypoxia inducible factors (HIFs) are a hallmark of inflammation and are key regulators of hepatic immunity and metabolism, yet their role in HBV replication is poorly defined. HBV replicates in hepatocytes within the liver, a naturally hypoxic organ, however most studies of viral replication are performed under conditions of atmospheric oxygen, where HIFs are inactive. We therefore investigated the role of HIFs in regulating HBV replication. METHODS: Using cell culture, animal models, human tissue and pharmacological agents inhibiting the HIF-prolyl hydroxylases, we investigated the impact of hypoxia on the HBV life cycle. RESULTS: Culturing liver cell-based model systems under low oxygen uncovered a new role for HIFs in binding HBV DNA and activating the basal core promoter, leading to increased pre-genomic RNA and de novo HBV particle secretion. The presence of hypoxia responsive elements among all primate members of the hepadnaviridae highlights an evolutionary conserved role for HIFs in regulating this virus family. CONCLUSIONS: Identifying a role for this conserved oxygen sensor in regulating HBV transcription suggests that this virus has evolved to exploit the HIF signaling pathway to persist in the low oxygen environment of the liver. Our studies show the importance of considering oxygen availability when studying HBV-host interactions and provide innovative routes to better understand and target chronic HBV infection. LAY SUMMARY: Viral replication in host cells is defined by the cellular microenvironment and one key factor is local oxygen tension. Hepatitis B virus (HBV) replicates in the liver, a naturally hypoxic organ. Hypoxia inducible factors (HIFs) are the major sensors of low oxygen; herein, we identify a new role for these factors in regulating HBV replication, revealing new therapeutic targets.


Assuntos
Vírus da Hepatite B , Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia , Fator 6 Semelhante a Kruppel/metabolismo , Oxigênio/metabolismo , Replicação Viral/fisiologia , Animais , Microambiente Celular , Hepadnaviridae/fisiologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Fígado/metabolismo , Transdução de Sinais , Ativação Transcricional
5.
EMBO Rep ; 20(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429208

RESUMO

Hypoxia-inducible factor (HIF) is the major transcriptional regulator of cellular responses to hypoxia. The two principal HIF-α isoforms, HIF-1α and HIF-2α, are progressively stabilized in response to hypoxia and form heterodimers with HIF-1ß to activate a broad range of transcriptional responses. Here, we report on the pan-genomic distribution of isoform-specific HIF binding in response to hypoxia of varying severity and duration, and in response to genetic ablation of each HIF-α isoform. Our findings reveal that, despite an identical consensus recognition sequence in DNA, each HIF heterodimer loads progressively at a distinct repertoire of cell-type-specific sites across the genome, with little evidence of redistribution under any of the conditions examined. Marked biases towards promoter-proximal binding of HIF-1 and promoter-distant binding of HIF-2 were observed under all conditions and were consistent in multiple cell type. The findings imply that each HIF isoform has an inherent property that determines its binding distribution across the genome, which might be exploited to therapeutically target the specific transcriptional output of each isoform independently.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transcrição Gênica , Linhagem Celular , Cromatina/genética , DNA/genética , Proteínas de Ligação a DNA/genética , Epigenômica , Regulação da Expressão Gênica/genética , Humanos , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética
6.
Haematologica ; 105(12): 2774-2784, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33256376

RESUMO

While it is well-established that distal hypoxia response elements (HREs) regulate hypoxia-inducible factor (HIF) target genes such as erythropoietin (Epo), an interplay between multiple distal and proximal (promoter) HREs has not been described so far. Hepatic Epo expression is regulated by a HRE located downstream of the EPO gene, but this 3' HRE is dispensable for renal EPO gene expression. We previously identified a 5' HRE and could show that both HREs direct exogenous reporter gene expression. Here, we show that whereas in hepatic cells the 3' but not the 5' HRE is required, in neuronal cells both the 5' and 3' HREs contribute to endogenous Epo induction. Moreover, two novel putative HREs were identified in the EPO promoter. In hepatoma cells HIF interacted mainly with the distal 3' HRE, but in neuronal cells HIF most strongly bound the promoter, to a lesser extent the 3' HRE, and not at all the 5' HRE. Interestingly, mutation of either of the two distal HREs abrogated HIF binding to the 3' and promoter HREs. These results suggest that a canonical functional HRE can recruit multiple, not necessarily HIF, transcription factors to mediate HIF binding to different distant HREs in an organ-specific manner.


Assuntos
Eritropoetina , Elementos de Resposta , Hipóxia Celular , Eritropoetina/genética , Expressão Gênica , Humanos , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia
7.
PLoS Genet ; 13(7): e1006872, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28715484

RESUMO

Un-physiological activation of hypoxia inducible factor (HIF) is an early event in most renal cell cancers (RCC) following inactivation of the von Hippel-Lindau tumor suppressor. Despite intense study, how this impinges on cancer development is incompletely understood. To test for the impact of genetic signals on this pathway, we aligned human RCC-susceptibility polymorphisms with genome-wide assays of HIF-binding and observed highly significant overlap. Allele-specific assays of HIF binding, chromatin conformation and gene expression together with eQTL analyses in human tumors were applied to mechanistic analysis of one such overlapping site at chromosome 12p12.1. This defined a novel stage-specific mechanism in which the risk polymorphism, rs12814794, directly creates a new HIF-binding site that mediates HIF-1α isoform specific upregulation of its target BHLHE41. The alignment of multiple sites in the HIF cis-acting apparatus with RCC-susceptibility polymorphisms strongly supports a causal model in which minor variation in this pathway exerts significant effects on RCC development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Polimorfismo de Nucleotídeo Único , Alelos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Renais/diagnóstico , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Cromossomos Humanos Par 12/genética , Ciclina D1 , Estudo de Associação Genômica Ampla , Células HeLa , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células MCF-7 , Locos de Características Quantitativas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Regulação para Cima
8.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171917

RESUMO

Cellular responses to low oxygen (hypoxia) are fundamental to normal physiology and to the pathology of many common diseases. Hypoxia-inducible factor (HIF) is central to this by enhancing the transcriptional activity of many hundreds of genes. The cellular response to HIF is cell-type-specific and is largely governed by the pre-existing epigenetic landscape. Prior to activation, HIF-binding sites and the promoters of HIF-target genes are already accessible, in contact with each other through chromatin looping and display markers of activity. However, hypoxia also modulates the epigenetic environment, both in parallel to and as a consequence of HIF activation. This occurs through a combination of oxygen-sensitive changes in enzyme activity, transcriptional activation of epigenetic modifiers, and localized recruitment to chromatin by HIF and activated RNApol2. These hypoxic changes in the chromatin environment may both contribute to and occur as a consequence of transcriptional regulation. Nevertheless, they have the capacity to both modulate and extend the transcriptional response to hypoxia.


Assuntos
Hipóxia Celular/fisiologia , Cromatina/genética , Fator 1 Induzível por Hipóxia/metabolismo , Animais , Sítios de Ligação , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Expressão Gênica , Humanos , Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigênio/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica
9.
BMC Cancer ; 19(1): 967, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623580

RESUMO

BACKGROUND: Patients with metastatic renal carcinoma frequently have pre-existing renal impairment and not infrequently develop worsening renal function as a complication of their treatment. The presence of pancreatic metastases in patients with metastatic renal carcinoma, often confers a more favourable prognosis and as a consequence this patient group may be exposed to such treatments for more prolonged periods of time. However, the development of renal failure may also be a consequence of the cancer itself rather than its treatment. CASE PRESENTATION: We present an 84-year-old patient receiving the tyrosine kinase inhibitor (TKI) pazopanib for metastatic renal carcinoma who developed oxalate nephropathy as a consequence of pancreatic exocrine insufficiency resulting from pancreatic metastases. CONCLUSIONS: This case demonstrates the importance of investigating unexpected toxicities and highlights the potential consequences of pancreatic insufficiency and its sequelae in patients with pancreatic metastases.


Assuntos
Carcinoma de Células Renais/complicações , Carcinoma de Células Renais/patologia , Insuficiência Pancreática Exócrina/complicações , Falência Renal Crônica/etiologia , Neoplasias Renais/complicações , Neoplasias Renais/patologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/secundário , Acetatos/uso terapêutico , Idoso de 80 Anos ou mais , Compostos de Cálcio/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Fármacos Gastrointestinais/uso terapêutico , Humanos , Indazóis , Falência Renal Crônica/terapia , Neoplasias Renais/tratamento farmacológico , Masculino , Oxalatos/urina , Neoplasias Pancreáticas/tratamento farmacológico , Pancrelipase/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/efeitos adversos , Pirimidinas/uso terapêutico , Diálise Renal , Sulfonamidas/efeitos adversos , Sulfonamidas/uso terapêutico , Resultado do Tratamento
11.
EMBO Rep ; 17(10): 1410-1421, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506891

RESUMO

Hypoxia-inducible factor (HIF) directs an extensive transcriptional cascade that transduces numerous adaptive responses to hypoxia. Pan-genomic analyses, using chromatin immunoprecipitation and transcript profiling, have revealed large numbers of HIF-binding sites that are generally associated with hypoxia-inducible transcripts, even over long chromosomal distances. However, these studies do not define the specific targets of HIF-binding sites and do not reveal how induction of HIF affects chromatin conformation over distantly connected functional elements. To address these questions, we deployed a recently developed chromosome conformation assay that enables simultaneous high-resolution analyses from multiple viewpoints. These assays defined specific long-range interactions between intergenic HIF-binding regions and one or more promoters of hypoxia-inducible genes, revealing the existence of multiple enhancer-promoter, promoter-enhancer, and enhancer-enhancer interactions. However, neither short-term activation of HIF by hypoxia, nor long-term stabilization of HIF in von Hippel-Lindau (VHL)-defective cells greatly alters these interactions, indicating that at least under these conditions, HIF can operate on preexisting patterns of chromatin-chromatin interactions that define potential transcriptional targets and permit rapid gene activation by hypoxic stress.


Assuntos
Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Biologia Computacional/métodos , Fator 1 Induzível por Hipóxia/metabolismo , Regiões Promotoras Genéticas , Algoritmos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Análise por Conglomerados , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Glicólise , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Especificidade de Órgãos/genética , Ligação Proteica , Ativação Transcricional
12.
J Biol Chem ; 291(39): 20661-73, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27502280

RESUMO

The hypoxia-inducible factor (HIF) system orchestrates cellular responses to hypoxia in animals. HIF is an α/ß-heterodimeric transcription factor that regulates the expression of hundreds of genes in a tissue context-dependent manner. The major hypoxia-sensing component of the HIF system involves oxygen-dependent catalysis by the HIF hydroxylases; in humans there are three HIF prolyl hydroxylases (PHD1-3) and an asparaginyl hydroxylase (factor-inhibiting HIF (FIH)). PHD catalysis regulates HIFα levels, and FIH catalysis regulates HIF activity. How differences in HIFα hydroxylation status relate to variations in the induction of specific HIF target gene transcription is unknown. We report studies using small molecule HIF hydroxylase inhibitors that investigate the extent to which HIF target gene expression is induced by PHD or FIH inhibition. The results reveal substantial differences in the role of prolyl and asparaginyl hydroxylation in regulating hypoxia-responsive genes in cells. PHD inhibitors with different structural scaffolds behave similarly. Under the tested conditions, a broad-spectrum 2-oxoglutarate dioxygenase inhibitor is a better mimic of the overall transcriptional response to hypoxia than the selective PHD inhibitors, consistent with an important role for FIH in the hypoxic transcriptional response. Indeed, combined application of selective PHD and FIH inhibitors resulted in the transcriptional induction of a subset of genes not fully responsive to PHD inhibition alone. Thus, for the therapeutic regulation of HIF target genes, it is important to consider both PHD and FIH activity, and in the case of some sets of target genes, simultaneous inhibition of the PHDs and FIH catalysis may be preferable.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/biossíntese , Transcrição Gênica/fisiologia , Hipóxia Celular/fisiologia , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Células MCF-7
13.
Nucleic Acids Res ; 43(12): 5810-23, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26007655

RESUMO

A crucial step in the cellular adaptation to oxygen deficiency is the binding of hypoxia-inducible factors (HIFs) to hypoxia response elements (HREs) of oxygen-regulated genes. Genome-wide HIF-1α/2α/ß DNA-binding studies revealed that the majority of HREs reside distant to the promoter regions, but the function of these distal HREs has only been marginally studied in the genomic context. We used chromatin immunoprecipitation (ChIP), gene editing (TALEN) and chromosome conformation capture (3C) to localize and functionally characterize a 82 kb upstream HRE that solely drives oxygen-regulated expression of the newly identified HIF target gene PAG1. PAG1, a transmembrane adaptor protein involved in Src signalling, was hypoxically induced in various cell lines and mouse tissues. ChIP and reporter gene assays demonstrated that the -82 kb HRE regulates PAG1, but not an equally distant gene further upstream, by direct interaction with HIF. Ablation of the consensus HRE motif abolished the hypoxic induction of PAG1 but not general oxygen signalling. 3C assays revealed that the -82 kb HRE physically associates with the PAG1 promoter region, independent of HIF-DNA interaction. These results demonstrate a constitutive interaction between the -82 kb HRE and the PAG1 promoter, suggesting a physiologically important rapid response to hypoxia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromatina/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/genética , Elementos de Resposta , Ativação Transcricional , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Hipóxia Celular , Linhagem Celular , Cromatina/química , Células HeLa , Humanos , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Quinases da Família src/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(28): 10083-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958873

RESUMO

The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.


Assuntos
Archaea/fisiologia , Evolução Biológica , Fósseis , Erupções Vulcânicas
15.
EMBO Rep ; 15(1): 70-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24363272

RESUMO

Hypoxia is central to both ischaemic and neoplastic diseases. However, the non-coding transcriptional response to hypoxia is largely uncharacterized. We undertook integrated genomic analyses of both non-coding and coding transcripts using massively parallel sequencing and interfaced this data with pan-genomic analyses of hypoxia-inducible factor (HIF) and RNApol2 binding in hypoxic cells. These analyses revealed that all classes of RNA are profoundly regulated by hypoxia and implicated HIF as a major direct regulator of both the non-coding and coding transcriptome, acting predominantly through release of pre-bound promoter-paused RNApol2. These findings indicate that the transcriptional response to hypoxia is substantially more extensive than previously considered.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , RNA Polimerase II/metabolismo , Transcriptoma , Hipóxia Celular , Humanos , Células MCF-7 , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transcrição Gênica
16.
Mol Cancer ; 13: 28, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24517586

RESUMO

BACKGROUND: In mammalians, HIF is a master regulator of hypoxia gene expression through direct binding to DNA, while its role in microRNA expression regulation, critical in the hypoxia response, is not elucidated genome wide. Our aim is to investigate in depth the regulation of microRNA expression by hypoxia in the breast cancer cell line MCF-7, establish the relationship between microRNA expression and HIF binding sites, pri-miRNA transcription and microRNA processing gene expression. METHODS: MCF-7 cells were incubated at 1% Oxygen for 16, 32 and 48 h. SiRNA against HIF-1α and HIF-2α were performed as previously published. MicroRNA and mRNA expression were assessed using microRNA microarrays, small RNA sequencing, gene expression microarrays and Real time PCR. The Kraken pipeline was applied for microRNA-seq analysis along with Bioconductor packages. Microarray data was analysed using Limma (Bioconductor), ChIP-seq data were analysed using Gene Set Enrichment Analysis and multiple testing correction applied in all analyses. RESULTS: Hypoxia time course microRNA sequencing data analysis identified 41 microRNAs significantly up- and 28 down-regulated, including hsa-miR-4521, hsa-miR-145-3p and hsa-miR-222-5p reported in conjunction with hypoxia for the first time. Integration of HIF-1α and HIF-2α ChIP-seq data with expression data showed overall association between binding sites and microRNA up-regulation, with hsa-miR-210-3p and microRNAs of miR-27a/23a/24-2 and miR-30b/30d clusters as predominant examples. Moreover the expression of hsa-miR-27a-3p and hsa-miR-24-3p was found positively associated to a hypoxia gene signature in breast cancer. Gene expression analysis showed no full coordination between pri-miRNA and microRNA expression, pointing towards additional levels of regulation. Several transcripts involved in microRNA processing were found regulated by hypoxia, of which DICER (down-regulated) and AGO4 (up-regulated) were HIF dependent. DICER expression was found inversely correlated to hypoxia in breast cancer. CONCLUSIONS: Integrated analysis of microRNA, mRNA and ChIP-seq data in a model cell line supports the hypothesis that microRNA expression under hypoxia is regulated at transcriptional and post-transcriptional level, with the presence of HIF binding sites at microRNA genomic loci associated with up-regulation. The identification of hypoxia and HIF regulated microRNAs relevant for breast cancer is important for our understanding of disease development and design of therapeutic interventions.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , Fator 1 Induzível por Hipóxia/genética , MicroRNAs/análise , RNA Mensageiro/análise , Neoplasias da Mama/metabolismo , Hipóxia Celular/genética , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
17.
Blood ; 119(3): 857-60, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22130801

RESUMO

Enhanced erythropoietic drive and iron deficiency both influence iron homeostasis through the suppression of the iron regulatory hormone hepcidin. Hypoxia also suppresses hepcidin through a mechanism that is unknown. We measured iron indices and plasma hepcidin levels in healthy volunteers during a 7-day sojourn to high altitude (4340 m above sea level), with and without prior intravenous iron loading. Without prior iron loading, a rapid reduction in plasma hepcidin was observed that was almost complete by the second day at altitude. This occurred before any index of iron availability had changed. Prior iron loading delayed the decrease in hepcidin until after the transferrin saturation, but not the ferritin concentration, had normalized. We conclude that hepcidin suppression by the hypoxia of high altitude is not driven by a reduction in iron stores.


Assuntos
Altitude , Peptídeos Catiônicos Antimicrobianos/metabolismo , Regulação da Expressão Gênica , Hipóxia/metabolismo , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Adulto , Estudos de Casos e Controles , Eritropoese/genética , Eritropoese/fisiologia , Eritropoetina/metabolismo , Ferritinas/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Hepcidinas , Homeostase , Humanos , Hipóxia/complicações , Distúrbios do Metabolismo do Ferro/etiologia , Ferro da Dieta/metabolismo , Transferrina/genética , Transferrina/metabolismo , Talassemia beta/metabolismo
18.
Cancer Res ; 84(11): 1799-1816, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38502859

RESUMO

Defining the initial events in oncogenesis and the cellular responses they entrain, even in advance of morphologic abnormality, is a fundamental challenge in understanding cancer initiation. As a paradigm to address this, we longitudinally studied the changes induced by loss of the tumor suppressor gene von Hippel Lindau (VHL), which ultimately drives clear cell renal cell carcinoma. Vhl inactivation was directly coupled to expression of a tdTomato reporter within a single allele, allowing accurate visualization of affected cells in their native context and retrieval from the kidney for single-cell RNA sequencing. This strategy uncovered cell type-specific responses to Vhl inactivation, defined a proximal tubular cell class with oncogenic potential, and revealed longer term adaptive changes in the renal epithelium and the interstitium. Oncogenic cell tagging also revealed markedly heterogeneous cellular effects including time-limited proliferation and elimination of specific cell types. Overall, this study reports an experimental strategy for understanding oncogenic processes in which cells bearing genetic alterations can be generated in their native context, marked, and analyzed over time. The observed effects of loss of Vhl in kidney cells provide insights into VHL tumor suppressor action and development of renal cell carcinoma. SIGNIFICANCE: Single-cell analysis of heterogeneous and dynamic responses to Vhl inactivation in the kidney suggests that early events shape the cell type specificity of oncogenesis, providing a focus for mechanistic understanding and therapeutic targeting.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Análise de Célula Única , Proteína Supressora de Tumor Von Hippel-Lindau , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Análise de Célula Única/métodos , Animais , Camundongos , Transcriptoma , Humanos , Rim/patologia , Rim/metabolismo , Carcinogênese/genética , Proliferação de Células/genética
19.
Blood ; 117(23): e207-17, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21447827

RESUMO

Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mapeamento Cromossômico , Epigênese Genética/fisiologia , Genoma Humano/fisiologia , Estudo de Associação Genômica Ampla , Elementos de Resposta/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , Feminino , Humanos , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA