Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 542(7641): 307-312, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28178233

RESUMO

Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.


Assuntos
Chenopodium quinoa/genética , Genoma de Planta/genética , Processamento Alternativo/genética , Diploide , Evolução Molecular , Pool Gênico , Anotação de Sequência Molecular , Mutação , Poliploidia , Saponinas/biossíntese , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
3.
Biochem J ; 478(8): 1525-1545, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33787846

RESUMO

The Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many different host cell proteins, thereby disrupting their functions. For example, the combination of a linear proline-rich motif and hydrophobic core domain surface allows Nef to bind tightly and specifically to SH3 domains of Src family kinases. We investigated whether the interplay between Nef's flexible regions and its core domain could allosterically influence ligand selection. We found that the flexible regions can associate with the core domain in different ways, producing distinct conformational states that alter the way in which Nef selects for SH3 domains and exposes some of its binding motifs. The ensuing crosstalk between ligands might promote functionally coherent Nef-bound protein ensembles by synergizing certain subsets of ligands while excluding others. We also combined proteomic and bioinformatics analyses to identify human proteins that select SH3 domains in the same way as Nef. We found that only 3% of clones from a whole-human fetal library displayed Nef-like SH3 selectivity. However, in most cases, this selectivity appears to be achieved by a canonical linear interaction rather than by a Nef-like 'tertiary' interaction. Our analysis supports the contention that Nef's mode of hijacking SH3 domains is a virus-specific adaptation with no or very few cellular counterparts. Thus, the Nef tertiary binding surface is a promising virus-specific drug target.


Assuntos
HIV-1/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Proteínas Nucleares/química , Proteínas Proto-Oncogênicas c-fyn/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Sítio Alostérico , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional/métodos , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Feto , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , HIV-1/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Ligantes , Simulação de Dinâmica Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
4.
Bioinformatics ; 36(4): 1121-1128, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31584626

RESUMO

MOTIVATION: Leucine-aspartic acid (LD) motifs are short linear interaction motifs (SLiMs) that link paxillin family proteins to factors controlling cell adhesion, motility and survival. The existence and importance of LD motifs beyond the paxillin family is poorly understood. RESULTS: To enable a proteome-wide assessment of LD motifs, we developed an active learning based framework (LD motif finder; LDMF) that iteratively integrates computational predictions with experimental validation. Our analysis of the human proteome revealed a dozen new proteins containing LD motifs. We found that LD motif signalling evolved in unicellular eukaryotes more than 800 Myr ago, with paxillin and vinculin as core constituents, and nuclear export signal as a likely source of de novo LD motifs. We show that LD motif proteins form a functionally homogenous group, all being involved in cell morphogenesis and adhesion. This functional focus is recapitulated in cells by GFP-fused LD motifs, suggesting that it is intrinsic to the LD motif sequence, possibly through their effect on binding partners. Our approach elucidated the origin and dynamic adaptations of an ancestral SLiM, and can serve as a guide for the identification of other SLiMs for which only few representatives are known. AVAILABILITY AND IMPLEMENTATION: LDMF is freely available online at www.cbrc.kaust.edu.sa/ldmf; Source code is available at https://github.com/tanviralambd/LD/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteoma , Motivos de Aminoácidos , Ácido Aspártico , Humanos , Leucina , Prevalência
5.
Nucleic Acids Res ; 47(5): 2666-2680, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30597093

RESUMO

As an environment-dependent pleiotropic gene regulator in Gram-negative bacteria, the H-NS protein is crucial for adaptation and toxicity control of human pathogens such as Salmonella, Vibrio cholerae or enterohaemorrhagic Escherichia coli. Changes in temperature affect the capacity of H-NS to form multimers that condense DNA and restrict gene expression. However, the molecular mechanism through which H-NS senses temperature and other physiochemical parameters remains unclear and controversial. Combining structural, biophysical and computational analyses, we show that human body temperature promotes unfolding of the central dimerization domain, breaking up H-NS multimers. This unfolding event enables an autoinhibitory compact H-NS conformation that blocks DNA binding. Our integrative approach provides the molecular basis for H-NS-mediated environment-sensing and may open new avenues for the control of pathogenic multi-drug resistant bacteria.


Assuntos
Proteínas de Bactérias/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Desdobramento de Proteína , Proteínas de Bactérias/genética , DNA Bacteriano/química , Proteínas de Ligação a DNA/genética , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Interação Gene-Ambiente , Humanos , Domínios Proteicos , Multimerização Proteica/genética , Salmonella/genética , Salmonella/patogenicidade , Temperatura , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade
6.
Genet Med ; 21(3): 545-552, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30214071

RESUMO

PURPOSE: Congenital microcephaly (CM) is an important birth defect with long term neurological sequelae. We aimed to perform detailed phenotypic and genomic analysis of patients with Mendelian forms of CM. METHODS: Clinical phenotyping, targeted or exome sequencing, and autozygome analysis. RESULTS: We describe 150 patients (104 families) with 56 Mendelian forms of CM. Our data show little overlap with the genetic causes of postnatal microcephaly. We also show that a broad definition of primary microcephaly -as an autosomal recessive form of nonsyndromic CM with severe postnatal deceleration of occipitofrontal circumference-is highly sensitive but has a limited specificity. In addition, we expand the overlap between primary microcephaly and microcephalic primordial dwarfism both clinically (short stature in >52% of patients with primary microcephaly) and molecularly (e.g., we report the first instance of CEP135-related microcephalic primordial dwarfism). We expand the allelic and locus heterogeneity of CM by reporting 37 novel likely disease-causing variants in 27 disease genes, confirming the candidacy of ANKLE2, YARS, FRMD4A, and THG1L, and proposing the candidacy of BPTF, MAP1B, CCNH, and PPFIBP1. CONCLUSION: Our study refines the phenotype of CM, expands its genetics heterogeneity, and informs the workup of children born with this developmental brain defect.


Assuntos
Microcefalia/genética , Microcefalia/fisiopatologia , Adulto , Criança , Pré-Escolar , Nanismo/genética , Feminino , Genômica/métodos , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética , Linhagem , Fenótipo , Sequenciamento do Exoma/métodos
7.
Allergy ; 74(12): 2437-2448, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31269229

RESUMO

BACKGROUND: In recent years, the BRAF inhibitor vemurafenib has been successfully established in the therapy of advanced melanoma. Despite its superior efficacy, the use of vemurafenib is limited by frequent inflammatory cutaneous adverse events that affect patients' quality of life and may lead to dose reduction or even cessation of anti-tumor therapy. To date, the molecular and cellular mechanisms of vemurafenib-induced rashes have remained largely elusive. METHODS: In this study, we deployed immunohistochemistry, RT-qPCR, flow cytometry, lymphocyte activation tests, and different cell-free protein-interaction assays. RESULTS: We here demonstrate that vemurafenib inhibits the downstream signaling of the canonical pathway of aryl hydrocarbon receptor (AhR) in vitro, thereby inducing the expression of proinflammatory cytokines (eg, TNF) and chemokines (eg, CCL5). In line with these results, we observed an impaired expression of AhR-regulated genes (eg, CYP1A1) and an upregulation of the corresponding proinflammatory genes in vivo. Moreover, results of lymphocyte activation tests showed the absence of drug-specific T cells in respective patients. CONCLUSION: Taken together, we obtained no hint of an underlying sensitization against vemurafenib but found evidence suggesting that vemurafenib enhances proinflammatory responses by inhibition of canonical AhR signaling. Our findings contribute to our understanding of the central role of the AhR in skin inflammation and may point toward a potential role for topical AhR agonists in supportive cancer care.


Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Inibidores de Proteínas Quinases/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Vemurafenib/farmacologia , Idoso , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Biomarcadores , Biópsia , Estudos de Casos e Controles , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Dermatite/diagnóstico , Dermatite/etiologia , Modelos Animais de Doenças , Cobaias , Humanos , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Hidrocarboneto Arílico/química , Relação Estrutura-Atividade , Subpopulações de Linfócitos T , Células Th1/imunologia , Células Th1/metabolismo , Vemurafenib/efeitos adversos , Vemurafenib/uso terapêutico
8.
Plant J ; 89(2): 291-309, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664942

RESUMO

Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome diversity in response to diverse growth and stress cues. Recent work has shown that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various inhibitors of AS. Here, we show that the macrolide pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our RNA sequencing (RNA-seq) data revealed that PB mimics abiotic stress signals including salt, drought and abscisic acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A::LUC and MAPKKK18::uidA in Arabidopsis thaliana and mimics the effects of ABA on stomatal aperture. Genome-wide analysis of AS by RNA-seq revealed that PB perturbs the splicing machinery and leads to a striking increase in intron retention and a reduction in other forms of AS. Interestingly, PB treatment activates the ABA signaling pathway by inhibiting the splicing of clade A PP2C phosphatases while still maintaining to some extent the splicing of ABA-activated SnRK2 kinases. Taken together, our data establish PB as an inhibitor and modulator of splicing and a mimic of abiotic stress signals in plants. Thus, PB reveals the molecular underpinnings of the interplay between stress responses, ABA signaling and post-transcriptional regulation in plants.


Assuntos
Arabidopsis/fisiologia , Compostos de Epóxi/farmacologia , Macrolídeos/farmacologia , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/genética , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Íntrons , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
10.
Front Microbiol ; 13: 977673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071959

RESUMO

Quorum quenching (QQ) is the enzymatic degradation of molecules used by bacteria for synchronizing their behavior within communities. QQ has attracted wide attention due to its potential to inhibit biofilm formation and suppress the production of virulence factors. Through its capacity to limit biofouling and infections, QQ has applications in water treatment, aquaculture, and healthcare. Several different QQ enzymes have been described; however, they often lack the high stability and catalytic efficiency required for industrial applications. Previously, we identified genes from genome sequences of Red Sea sediment bacteria encoding potential QQ enzymes. In this study, we report that one of them, named LrsL, is a metallo-ß-lactamase superfamily QQ enzyme with outstanding catalytic features. X-ray crystallography shows that LrsL is a zinc-binding dimer. LrsL has an unusually hydrophobic substrate binding pocket that can accommodate a broad range of acyl-homoserine lactones (AHLs) with exceptionally high affinity. In vitro, LrsL achieves the highest catalytic efficiency reported thus far for any QQ enzyme with a Kcat /KM of 3 × 107. LrsL effectively inhibited Pseudomonas aeruginosa biofilm formation without affecting bacterial growth. Furthermore, LrsL suppressed the production of exopolysaccharides required for biofilm production. These features, and its capacity to regain its function after prolonged heat denaturation, identify LrsL as a robust and unusually efficient QQ enzyme for clinical and industrial applications.

11.
Commun Biol ; 5(1): 800, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945264

RESUMO

Multidomain kinases use many ways to integrate and process diverse stimuli. Here, we investigated the mechanism by which the protein tyrosine kinase 2-beta (PYK2) functions as a sensor and effector of cellular calcium influx. We show that the linker between the PYK2 kinase and FAT domains (KFL) encompasses an unusual calmodulin (CaM) binding element. PYK2 KFL is disordered and engages CaM through an ensemble of transient binding events. Calcium increases the association by promoting structural changes in CaM that expose auxiliary interaction opportunities. KFL also forms fuzzy dimers, and dimerization is enhanced by CaM binding. As a monomer, however, KFL associates with the PYK2 FERM-kinase fragment. Thus, we identify a mechanism whereby calcium influx can promote PYK2 self-association, and hence kinase-activating trans-autophosphorylation. Collectively, our findings describe a flexible protein module that expands the paradigms for CaM binding and self-association, and their use for controlling kinase activity.


Assuntos
Cálcio , Calmodulina , Cálcio/metabolismo , Calmodulina/metabolismo , Dimerização , Quinase 2 de Adesão Focal/química , Quinase 2 de Adesão Focal/metabolismo , Fosforilação
12.
Environ Int ; 158: 106989, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34991250

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), dioxin-like compounds (DLCs) and structurally-related environmental pollutants may contribute to the pathogenesis of various diseases and disorders, primarily by activating the aryl hydrocarbon receptor (AHR) and modulating downstream cellular responses. Accordingly, AHR is considered an attractive molecular target for preventive and therapeutic measures. However, toxicological risk assessment of AHR-modulating compounds as well as drug development is complicated by the fact that different ligands elicit remarkably different AHR responses. By elucidating the differential effects of PAHs and DLCs on aldo-keto reductase 1C3 expression and associated prostaglandin D2 metabolism, we here provide evidence that the epidermal growth factor receptor (EGFR) substantially shapes AHR ligand-induced responses in human epithelial cells, i.e. primary and immortalized keratinocytes and breast cancer cells. Exposure to benzo[a]pyrene (B[a]P) and dioxin-like polychlorinated biphenyl (PCB) 126 resulted in a rapid c-Src-mediated phosphorylation of EGFR. Moreover, both AHR agonists stimulated protein kinase C activity and enhanced the ectodomain shedding of cell surface-bound EGFR ligands. However, only upon B[a]P treatment, this process resulted in an auto-/paracrine activation of EGFR and a subsequent induction of aldo-keto reductase 1C3 and 11-ketoreduction of prostaglandin D2. Receptor binding and internalization assays, docking analyses and mutational amino acid exchange confirmed that DLCs, but not B[a]P, bind to the EGFR extracellular domain, thereby blocking EGFR activation by growth factors. Finally, nanopore long-read RNA-seq revealed hundreds of genes, whose expression is regulated by B[a]P, but not by PCB126, and sensitive towards pharmacological EGFR inhibition. Our data provide novel mechanistic insights into the ligand response of AHR signaling and identify EGFR as an effector of environmental chemicals.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Hidrocarbonetos Policíclicos Aromáticos , Membro C3 da Família 1 de alfa-Ceto Redutase , Receptores ErbB/genética , Humanos , Dibenzodioxinas Policloradas/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/genética
13.
Sci Rep ; 10(1): 17178, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057074

RESUMO

Tuberculosis-causing Mycobacterium tuberculosis (Mtb) is transmitted via airborne droplets followed by a primary infection of macrophages and dendritic cells. During the activation of host defence mechanisms also neutrophils and T helper 1 (TH1) and TH17 cells are recruited to the site of infection. The TH17 cell-derived interleukin (IL)-17 in turn induces the cathelicidin LL37 which shows direct antimycobacterial effects. Here, we investigated the role of IL-26, a TH1- and TH17-associated cytokine that exhibits antimicrobial activity. We found that both IL-26 mRNA and protein are strongly increased in tuberculous lymph nodes. Furthermore, IL-26 is able to directly kill Mtb and decrease the infection rate in macrophages. Binding of IL-26 to lipoarabinomannan might be one important mechanism in extracellular killing of Mtb. Macrophages and dendritic cells respond to IL-26 with secretion of tumor necrosis factor (TNF)-α and chemokines such as CCL20, CXCL2 and CXCL8. In dendritic cells but not in macrophages cytokine induction by IL-26 is partly mediated via Toll like receptor (TLR) 2. Taken together, IL-26 strengthens the defense against Mtb in two ways: firstly, directly due to its antimycobacterial properties and secondly indirectly by activating innate immune mechanisms.


Assuntos
Interleucinas/imunologia , Interleucinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/metabolismo , Adulto , Idoso , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Células HEK293 , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Células THP-1/imunologia , Células THP-1/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Sci Rep ; 9(1): 20396, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892719

RESUMO

The maltose-binding protein (MBP) is one of the most frequently used protein tags due to its capacity to stabilize, solubilize and even crystallize recombinant proteins that are fused to it. Given that MBP is thought to be a highly stable monomeric protein with known characteristics, fused passenger proteins are often studied without being cleaved from MBP. Here we report that a commonly used engineered MBP version (mutated to lower its surface entropy) can form interlaced dimers when fused to short protein sequences derived from the focal adhesion kinase (FAK) or the homologous protein tyrosine kinase 2 (PYK2). These MBP dimers still bind maltose and can interconvert with monomeric forms in vitro under standard conditions despite a contact surface of more than 11,000 Å2. We demonstrate that both the mutations in MBP and the fused protein sequences were required for dimer formation. The FAK and PYK2 sequences are less than 40% identical, monomeric, and did not show specific interactions with MBP, suggesting that a variety of sequences can promote this MBP dimerization. MBP dimerization was abrogated by reverting two of the eight mutations introduced in the engineered MBP. Our results provide an extreme example for induced reversible domain-swapping, with implications for protein folding dynamics. Our observations caution that passenger-promoted MBP dimerization might mislead experimental characterization of the fused protein sequences, but also suggest a simple mutation to stop this phenomenon.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas Ligantes de Maltose/metabolismo , Maltose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Ligantes de Maltose/genética , Dobramento de Proteína
15.
Genome Biol ; 20(1): 73, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31036069

RESUMO

Increasing genetic diversity via directed evolution holds great promise to accelerate trait development and crop improvement. We developed a CRISPR/Cas-based directed evolution platform in plants to evolve the rice (Oryza sativa) SF3B1 spliceosomal protein for resistance to splicing inhibitors. SF3B1 mutant variants, termed SF3B1-GEX1A-Resistant (SGR), confer variable levels of resistance to splicing inhibitors. Studies of the structural basis of the splicing inhibitor binding to SGRs corroborate the resistance phenotype. This directed evolution platform can be used to interrogate and evolve the molecular functions of key biomolecules and to engineer crop traits for improved performance and adaptation under climate change conditions.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Evolução Molecular , Técnicas Genéticas , Oryza/genética , Spliceossomos , Álcoois Graxos , Proteínas de Plantas/genética , Domínios Proteicos , Piranos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA