Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39012059

RESUMO

Regeneration is the remarkable phenomenon through which an organism can regrow lost or damaged parts with fully functional replacements, including complex anatomical structures, such as limbs. In 2019, Development launched its 'Model systems for regeneration' collection, a series of articles introducing some of the most popular model organisms for studying regeneration in vivo. To expand this topic further, this Perspective conveys the voices of five expert biologists from the field of regenerative biology, each of whom showcases some less well-known, but equally extraordinary, species for studying regeneration.


Assuntos
Regeneração , Animais , Humanos , Extremidades/fisiologia , Modelos Biológicos , Regeneração/fisiologia
2.
Development ; 147(8)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341028

RESUMO

Runx1 is a transcription factor that plays a key role in determining the proliferative and differential state of multiple cell types, during both development and adulthood. Here, we report how Runx1 is specifically upregulated at the injury site during zebrafish heart regeneration, and that absence of runx1 results in increased myocardial survival and proliferation, and overall heart regeneration, accompanied by decreased fibrosis. Using single cell sequencing, we found that the wild-type injury site consists of Runx1-positive endocardial cells and thrombocytes that induce expression of smooth muscle and collagen genes. Both these populations cannot be identified in runx1 mutant wounds that contain less collagen and fibrin. The reduction in fibrin in the mutant is further explained by reduced myofibroblast formation and upregulation of components of the fibrin degradation pathway, including plasminogen receptor annexin 2A as well as downregulation of plasminogen activator inhibitor serpine1 in myocardium and endocardium, resulting in increased levels of plasminogen. Our findings suggest that Runx1 controls the regenerative response of multiple cardiac cell types and that targeting Runx1 is a novel therapeutic strategy for inducing endogenous heart repair.


Assuntos
Cicatriz/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Coração/fisiopatologia , Miocárdio/patologia , Regeneração , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Anexina A2/metabolismo , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Endocárdio/patologia , Regulação da Expressão Gênica no Desenvolvimento , Músculo Liso/metabolismo , Mutação/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Cadeias Pesadas de Miosina/metabolismo , Regulação para Cima/genética , Proteínas de Peixe-Zebra/genética
3.
Proc Natl Acad Sci U S A ; 117(31): 18617-18626, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675240

RESUMO

Genome-wide association studies have identified noncoding variants near TBX3 that are associated with PR interval and QRS duration, suggesting that subtle changes in TBX3 expression affect atrioventricular conduction system function. To explore whether and to what extent the atrioventricular conduction system is affected by Tbx3 dose reduction, we first characterized electrophysiological properties and morphology of heterozygous Tbx3 mutant (Tbx3+/-) mouse hearts. We found PR interval shortening and prolonged QRS duration, as well as atrioventricular bundle hypoplasia after birth in heterozygous mice. The atrioventricular node size was unaffected. Transcriptomic analysis of atrioventricular nodes isolated by laser capture microdissection revealed hundreds of deregulated genes in Tbx3+/- mutants. Notably, Tbx3+/- atrioventricular nodes showed increased expression of working myocardial gene programs (mitochondrial and metabolic processes, muscle contractility) and reduced expression of pacemaker gene programs (neuronal, Wnt signaling, calcium/ion channel activity). By integrating chromatin accessibility profiles (ATAC sequencing) of atrioventricular tissue and other epigenetic data, we identified Tbx3-dependent atrioventricular regulatory DNA elements (REs) on a genome-wide scale. We used transgenic reporter assays to determine the functionality of candidate REs near Ryr2, an up-regulated chamber-enriched gene, and in Cacna1g, a down-regulated conduction system-specific gene. Using genome editing to delete candidate REs, we showed that a strong intronic bipartite RE selectively governs Cacna1g expression in the conduction system in vivo. Our data provide insights into the multifactorial Tbx3-dependent transcriptional network that regulates the structure and function of the cardiac conduction system, which may underlie the differences in PR duration and QRS interval between individuals carrying variants in the TBX3 locus.


Assuntos
Nó Atrioventricular , Proteínas com Domínio T , Transcriptoma/genética , Animais , Arritmias Cardíacas , Nó Atrioventricular/metabolismo , Nó Atrioventricular/fisiologia , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
4.
Development ; 145(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30042181

RESUMO

A small network of spontaneously active Tbx3+ cardiomyocytes forms the cardiac conduction system (CCS) in adults. Understanding the origin and mechanism of development of the CCS network are important steps towards disease modeling and the development of biological pacemakers to treat arrhythmias. We found that Tbx3 expression in the embryonic mouse heart is associated with automaticity. Genetic inducible fate mapping revealed that Tbx3+ cells in the early heart tube are fated to form the definitive CCS components, except the Purkinje fiber network. At mid-fetal stages, contribution of Tbx3+ cells was restricted to the definitive CCS. We identified a Tbx3+ population in the outflow tract of the early heart tube that formed the atrioventricular bundle. Whereas Tbx3+ cardiomyocytes also contributed to the adjacent Gja5+ atrial and ventricular chamber myocardium, embryonic Gja5+ chamber cardiomyocytes did not contribute to the Tbx3+ sinus node or to atrioventricular ring bundles. In conclusion, the CCS is established by progressive fate restriction of a Tbx3+ cell population in the early developing heart, which implicates Tbx3 as a useful tool for developing strategies to study and treat CCS diseases.


Assuntos
Fascículo Atrioventricular/embriologia , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Fascículo Atrioventricular/metabolismo , Conexinas/metabolismo , Técnicas de Cultura Embrionária , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Organogênese/fisiologia , Proteínas com Domínio T/genética , Proteína alfa-5 de Junções Comunicantes
5.
Dev Biol ; 441(2): 272-284, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29940142

RESUMO

Regulation of heart size and shape is one of the least understood processes in developmental biology. We have for the first time analysed the hearts of Astyanax mexicanus and identified several differences in heart morphology between the surface (epigean morph) and cave-dwelling (troglomorph) morphs. Examination of the adult revealed that the troglomorph possesses a smaller heart with a rounder ventricle in comparison to the epigean morph. The size differences identified appear to arise early in development, as early as 24 h post-fertilisation (hpf), while shape differences begin to appear at 2 days post-fertilisation. The heart of the first-generation cross between the cave-dwelling and river-dwelling morph shows uncoupling of different phenotypes observed in the parental populations and indicates that the cardiac differences have become embedded in the genome during evolution. The differences in heart morphology are accompanied by functional changes between the two morphs, with the cave-dwelling morph exhibiting a slower heart rate than the river-dwelling morph. The identification of morphological and functional differences in the A. mexicanus heart could allow us to gain more insight into how such parameters are regulated during cardiac development, with potential relevance to cardiac pathologies in humans.


Assuntos
Caraciformes , Cruzamentos Genéticos , Evolução Molecular , Genoma/fisiologia , Frequência Cardíaca/fisiologia , Coração/embriologia , Animais , Caraciformes/embriologia , Caraciformes/genética , Humanos , Tamanho do Órgão
6.
J Med Genet ; 54(12): 825-829, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28592524

RESUMO

BACKGROUND: Congenital heart disease (CHD) is a common birth defect affecting approximately 1% of newborns. Great progress has been made in elucidating the genetic aetiology of CHD with advances in genomic technology, which we leveraged in recovering a new pathway affecting heart development in humans previously known to affect heart development in an animal model. METHODS: Four hundred and sixteen individuals from Thailand and the USA diagnosed with CHD and/or congenital diaphragmatic hernia were evaluated with chromosomal microarray and whole exome sequencing. The DECIPHER Consortium and medical literature were searched for additional patients. Murine hearts from ENU-induced mouse mutants and transgenic mice were evaluated using both episcopic confocal histopathology and troponin I stained sections. RESULTS: Loss of function ROBO1 variants were identified in three families; each proband had a ventricular septal defect, and one proband had tetralogy of Fallot. Additionally, a microdeletion in an individual with CHD was found in the medical literature. Mouse models showed perturbation of the Slit-Robo signalling pathway, causing septation and outflow tract defects and craniofacial anomalies. Two probands had variable facial features consistent with the mouse model. CONCLUSION: Our findings identify Slit-Robo as a significant pathway in human heart development and CHD.


Assuntos
Defeitos dos Septos Cardíacos/diagnóstico , Defeitos dos Septos Cardíacos/genética , Mutação com Perda de Função , Proteínas do Tecido Nervoso/genética , Fenótipo , Receptores Imunológicos/genética , Tetralogia de Fallot/diagnóstico , Tetralogia de Fallot/genética , Animais , Criança , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Proteínas Roundabout
7.
J Neurosci ; 34(16): 5717-31, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24741061

RESUMO

The elaborate cytoarchitecture of the mammalian neocortex requires the timely production of its constituent pyramidal neurons and interneurons and their disposition in appropriate layers. Numerous chemotropic factors present in the forebrain throughout cortical development play important roles in the orchestration of these events. The Roundabout (Robo) family of receptors and their ligands, the Slit proteins, are expressed in the developing forebrain, and are known to play important roles in the generation and migration of cortical interneurons. However, few studies have investigated their function(s) in the development of pyramidal cells. Here, we observed expression of Robo1 and Slit genes (Slit1, Slit2) in cells lining the telencephalic ventricles, and found significant increases in progenitor cells (basal and apical) at embryonic day (E)12.5 and E14.5 in the developing cortex of Robo1(-/-), Slit1(-/-), and Slit1(-/-)/Slit2(-/-), but not in mice lacking the other Robo or Slit genes. Using layer-specific markers, we found that both early- and late-born pyramidal neuron populations were significantly increased in the cortices of Robo1(-/-) mice at the end of corticogenesis (E18.5). The excess number of cortical pyramidal neurons generated prenatally appears to die in early postnatal life. The observed increase in pyramidal neurons was due to prolonged proliferative activity of their progenitors and not due to changes in cell cycle events. This finding, confirmed by in utero electroporation with Robo1 short hairpin RNA (shRNA) or control constructs into progenitors along the ventricular zone as well as in dissociated cortical cell cultures, points to a novel role for Robo1 in regulating the proliferation and generation of pyramidal neurons.


Assuntos
Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento/genética , Neocórtex , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neurônios/fisiologia , Receptores Imunológicos/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/embriologia , Ventrículos Cerebrais/crescimento & desenvolvimento , Embrião de Mamíferos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/genética , Proteínas Roundabout
8.
Circ Res ; 112(3): 465-75, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23255421

RESUMO

RATIONALE: The Slit-Roundabout (Robo) signaling pathway has pleiotropic functions during Drosophila heart development. However, its role in mammalian heart development is largely unknown. OBJECTIVE: To analyze the role of Slit-Robo signaling in the formation of the pericardium and the systemic venous return in the murine heart. METHODS AND RESULTS: Expression of genes encoding Robo1 and Robo2 receptors and their ligands Slit2 and Slit3 was found in or around the systemic venous return and pericardium during development. Analysis of embryos lacking Robo1 revealed partial absence of the pericardium, whereas Robo1/2 double mutants additionally showed severely reduced sinus horn myocardium, hypoplastic caval veins, and a persistent left inferior caval vein. Mice lacking Slit3 recapitulated the defects in the myocardialization, alignment, and morphology of the caval veins. Ligand binding assays confirmed Slit3 as the preferred ligand for the Robo1 receptor, whereas Slit2 showed preference for Robo2. Sinus node development was mostly unaffected in all mutants. In addition, we show absence of cross-regulation with previously identified regulators Tbx18 and Wt1. We provide evidence that pericardial defects are created by abnormal localization of the caval veins combined with ectopic pericardial cavity formation. Local increase in neural crest cell death and impaired neural crest adhesive and migratory properties underlie the ectopic pericardium formation. CONCLUSIONS: A novel Slit-Robo signaling pathway is involved in the development of the pericardium, the sinus horn myocardium, and the alignment of the caval veins. Reduced Slit3 binding in the absence of Robo1, causing impaired cardiac neural crest survival, adhesion, and migration, underlies the pericardial defects.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pericárdio/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Veias Cavas/metabolismo , Animais , Apoptose , Adesão Celular , Movimento Celular , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Crista Neural/anormalidades , Crista Neural/metabolismo , Pericárdio/anormalidades , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Nó Sinoatrial/anormalidades , Nó Sinoatrial/metabolismo , Proteínas com Domínio T/metabolismo , Técnicas de Cultura de Tecidos , Veias Cavas/anormalidades , Proteínas WT1/metabolismo , Proteínas Roundabout
9.
Nature ; 458(7240): E8-9; discussion E9-10, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19369973

RESUMO

Uncovering the origins of myocardial cells is important for understanding and treating heart diseases. Cai et al. suggest that Tbx18-expressing epicardium provides a substantial contribution to myocytes in the ventricular septum and the atrial and ventricular walls. Here we show that the T-box transcription factor gene 18 (Tbx18) itself is expressed in the myocardium, showing that their genetic lineage tracing system does not allow conclusions of an epicardial origin of cardiomyocytes in vivo to be drawn.


Assuntos
Linhagem da Célula , Miocárdio/citologia , Pericárdio/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Diferenciação Celular , Corantes Fluorescentes , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Hibridização In Situ , Integrases/genética , Integrases/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Pericárdio/embriologia , RNA/análise , RNA/genética , Reprodutibilidade dos Testes , Proteínas com Domínio T/genética
10.
Circ Res ; 107(6): 728-36, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20671237

RESUMO

RATIONALE: The clinically important atrioventricular conduction axis is structurally complex and heterogeneous, and its molecular composition and developmental origin are uncertain. OBJECTIVE: To assess the molecular composition and 3D architecture of the atrioventricular conduction axis in the postnatal mouse heart and to define the developmental origin of its component parts. METHODS AND RESULTS: We generated an interactive 3D model of the atrioventricular junctions in the mouse heart using the patterns of expression of Tbx3, Hcn4, Cx40, Cx43, Cx45, and Nav1.5, which are important for conduction system function. We found extensive figure-of-eight rings of nodal and transitional cells around the mitral and tricuspid junctions and in the base of the atrial septum. The rings included the compact node and nodal extensions. We then used genetic lineage labeling tools (Tbx2(+/Cre), Mef2c-AHF-Cre, Tbx18(+/Cre)), along with morphometric analyses, to assess the developmental origin of the specific components of the axis. The majority of the atrial components, including the atrioventricular rings and compact node, are derived from the embryonic atrioventricular canal. The atrioventricular bundle, including the lower cells of the atrioventricular node, in contrast, is derived from the ventricular myocardium. No contributions to the conduction system myocardium were identified from the sinus venosus, the epicardium, or the dorsal mesenchymal protrusion. CONCLUSIONS: The atrioventricular conduction axis comprises multiple domains with distinctive molecular signatures. The atrial part proliferates from the embryonic atrioventricular canal, along with myocytes derived from the developing atrial septum. The atrioventricular bundle and lower nodal cells are derived from ventricular myocardium.


Assuntos
Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador , Animais , Nó Atrioventricular/anatomia & histologia , Nó Atrioventricular/embriologia , Nó Atrioventricular/crescimento & desenvolvimento , Feminino , Coração/anatomia & histologia , Coração/embriologia , Coração/crescimento & desenvolvimento , Sistema de Condução Cardíaco/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Camundongos , Camundongos Transgênicos , Gravidez
11.
Circ Res ; 106(7): 1212-20, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20185795

RESUMO

RATIONALE: The cardiac venous pole is a common focus of congenital malformations and atrial arrhythmias, yet little is known about the cellular and molecular mechanisms that regulate its development. The systemic venous return myocardium (sinus node and sinus horns) forms only late in cardiogenesis from a pool of pericardial mesenchymal precursor cells. OBJECTIVE: To analyze the cellular and molecular mechanisms directing the formation of the fetal sinus horns. METHODS AND RESULTS: We analyzed embryos deficient for the Wt1 (Wilms tumor 1) gene and observed a failure to form myocardialized sinus horns. Instead, the cardinal veins become embedded laterally in the pleuropericardial membranes that remain tethered to the lateral body wall by the persisting subcoelomic mesenchyme, a finding that correlates with decreased apoptosis in this region. We show by expression analysis and lineage tracing studies that Wt1 is expressed in the subcoelomic mesenchyme surrounding the cardinal veins, but that this Wt1-positive mesenchyme does not contribute cells to the sinus horn myocardium. Expression of the Raldh2 (aldehyde dehydrogenase family 1, subfamily A2) gene was lost from this mesenchyme in Wt1(-/-) embryos. Phenotypic analysis of Raldh2 mutant mice rescued from early cardiac defects by retinoic acid food supply revealed defects of the venous pole and pericardium highly similar to those of Wt1(-/-) mice. CONCLUSIONS: Pericardium and sinus horn formation are coupled and depend on the expansion and correct temporal release of pleuropericardial membranes from the underlying subcoelomic mesenchyme. Wt1 and downstream Raldh2/retinoic acid signaling are crucial regulators of this process. Thus, our results provide novel insight into the genetic and cellular pathways regulating the posterior extension of the mammalian heart and the formation of its coelomic lining.


Assuntos
Seio Coronário/metabolismo , Mesoderma/metabolismo , Pericárdio/metabolismo , Pleura/metabolismo , Transdução de Sinais , Nó Sinoatrial/metabolismo , Tretinoína/metabolismo , Proteínas WT1/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Apoptose , Linhagem da Célula , Seio Coronário/embriologia , Morte Fetal , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Pericárdio/embriologia , Fenótipo , Pleura/embriologia , Transdução de Sinais/genética , Nó Sinoatrial/embriologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteínas WT1/deficiência , Proteínas WT1/genética
12.
J Am Heart Assoc ; 11(7): e023348, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35343246

RESUMO

Background Binding of Slit ligands to their Robo receptors regulates signaling pathways that are important for heart development. Genetic variants in ROBO1and ROBO4 have been linked to congenital heart defects in humans. These defects are recapitulated in mouse models with ubiquitous deletions of the Slit ligands or Robo receptors and include additional heart defects not currently linked to SLIT or ROBO mutations in humans. Given the broad expression patterns of these genes, the question remains open which tissue-specific ligand-receptor interactions are important for the correct development of different cardiac structures. Methods and Results We used tissue-specific knockout mouse models of Robo1/Robo2, Robo4, Slit2 andSlit3 and scored cardiac developmental defects in perinatal mice. Knockout of Robo2 in either the whole heart, endocardium and its derivatives, or the neural crest in ubiquitous Robo1 knockout background resulted in ventricular septal defects. Neural crest-specific removal of Robo2 in Robo1 knockouts showed fully penetrant bicuspid aortic valves (BAV). Endocardial knock-out of either Slit2or Robo4 caused low penetrant BAV. In contrast, endocardial knockout of Slit3 using a newly generated line resulted in fully penetrant BAV, while removal from smooth muscle cells also resulted in BAV. Caval vein and diaphragm defects observed in ubiquitous Slit3 mutants were recapitulated in the tissue-specific knockouts. Conclusions Our data will help understand defects observed in patients with variants in ROBO1 and ROBO4. The results strongly indicate interaction between endocardial Slit3and neural crest Robo2 in the development of BAV, highlighting the need for further studies of this connection.


Assuntos
Proteínas do Tecido Nervoso , Receptores Imunológicos , Animais , Diafragma/metabolismo , Feminino , Coração , Humanos , Proteínas de Membrana , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
13.
Cells ; 11(4)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203259

RESUMO

Advances in sequencing and assembly technology have led to the creation of genome assemblies for a wide variety of non-model organisms. The rapid production and proliferation of updated, novel assembly versions can create vexing problems for researchers when multiple-genome assembly versions are available at once, requiring researchers to work with more than one reference genome. Multiple-genome assemblies are especially problematic for researchers studying the genetic makeup of individual cells, as single-cell RNA sequencing (scRNAseq) requires sequenced reads to be mapped and aligned to a single reference genome. Using the Astyanax mexicanus, this study highlights how the interpretation of a single-cell dataset from the same sample changes when aligned to its two different available genome assemblies. We found that the number of cells and expressed genes detected were drastically different when aligning to the different assemblies. When the genome assemblies were used in isolation with their respective annotations, cell-type identification was confounded, as some classic cell-type markers were assembly-specific, whilst other genes showed differential patterns of expression between the two assemblies. To overcome the problems posed by multiple-genome assemblies, we propose that researchers align to each available assembly and then integrate the resultant datasets to produce a final dataset in which all genome alignments can be used simultaneously. We found that this approach increased the accuracy of cell-type identification and maximised the amount of data that could be extracted from our single-cell sample by capturing all possible cells and transcripts. As scRNAseq becomes more widely available, it is imperative that the single-cell community is aware of how genome assembly alignment can alter single-cell data and their interpretation, especially when reviewing studies on non-model organisms.


Assuntos
Genoma , Sequência de Bases , Genoma/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA , Sequenciamento do Exoma
14.
Circ Res ; 104(3): 388-97, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19096026

RESUMO

The sinus node (or sinoatrial node [SAN]), the pacemaker of the heart, is a functionally and structurally heterogeneous tissue, which consists of a large "head" within the right caval vein myocardium and a "tail" along the terminal crest. Here, we investigated its cellular origin and mechanism of formation. Using genetic lineage analysis and explant assays, we identified T-box transcription factor Tbx18-expressing mesenchymal progenitors in the inflow tract region that differentiate into pacemaker myocardium to form the SAN. We found that the head and tail represent separate regulatory domains expressing distinctive gene programs. Tbx18 is required to establish the large head structure, as seen by the existence of a very small but still functional tail piece in Tbx18-deficient fetuses. In contrast, Tbx3-deficient embryos formed a morphologically normal SAN, which, however, aberrantly expressed Cx40 and other atrial genes, demonstrating that Tbx3 controls differentiation of SAN head and tail cardiomyocytes but also demonstrating that Tbx3 is not required for the formation of the SAN structure. Our data establish a functional order for Tbx18 and Tbx3 in SAN formation, in which Tbx18 controls the formation of the SAN head from mesenchymal precursors, on which Tbx3 subsequently imposes the pacemaker gene program.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Nó Sinoatrial/citologia , Nó Sinoatrial/embriologia , Proteínas com Domínio T/genética , Animais , Diferenciação Celular/fisiologia , Conexinas/genética , Técnicas de Introdução de Genes , Coração/embriologia , Átrios do Coração/citologia , Átrios do Coração/embriologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , Proteínas com Domínio T/metabolismo , Proteína alfa-5 de Junções Comunicantes
15.
J Cardiovasc Dev Dis ; 8(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467137

RESUMO

The adult human heart cannot repair itself after injury and, instead, forms a permanent fibrotic scar that impairs cardiac function and can lead to incurable heart failure. The zebrafish, amongst other organisms, has been extensively studied for its innate capacity to repair its heart after injury. Understanding the signals that govern successful regeneration in models such as the zebrafish will lead to the development of effective therapies that can stimulate endogenous repair in humans. To date, many studies have investigated cardiac regeneration using a reverse genetics candidate gene approach. However, this approach is limited in its ability to unbiasedly identify novel genes and signalling pathways that are essential to successful regeneration. In contrast, drawing comparisons between different models of regeneration enables unbiased screens to be performed, identifying signals that have not previously been linked to regeneration. Here, we will review in detail what has been learnt from the comparative approach, highlighting the techniques used and how these studies have influenced the field. We will also discuss what further comparisons would enhance our knowledge of successful regeneration and scarring. Finally, we focus on the Astyanax mexicanus, an intraspecies comparative fish model that holds great promise for revealing the secrets of the regenerating heart.

16.
Nat Commun ; 12(1): 1447, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664263

RESUMO

Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26. We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3, in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.


Assuntos
Adaptação Fisiológica/genética , Characidae/embriologia , Characidae/genética , Olho/embriologia , Herança Multifatorial/genética , Animais , Evolução Biológica , Cavernas , Mapeamento Cromossômico , Evolução Molecular , Edição de Genes , Genoma/genética , Proteínas de Homeodomínio/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Locos de Características Quantitativas/genética
17.
Circ Res ; 102(11): 1340-9, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18467625

RESUMO

The cardiac conduction system consists of distinctive heart muscle cells that initiate and propagate the electric impulse required for coordinated contraction. The conduction system expresses the transcriptional repressor Tbx3, which is required for vertebrate development and controls the formation of the sinus node. In humans, mutations in Tbx3 cause ulnar-mammary syndrome. Here, we investigated the role of Tbx3 in the molecular specification of the atrioventricular conduction system. Expression analysis revealed early delineation of the atrioventricular bundle and proximal bundle branches by Tbx3 expression in human, mouse, and chicken. Tbx3-deficient mice, which die between embryonic day 12.5 and 15.5, ectopically expressed genes for connexin (Cx)43, atrial natriuretic factor (Nppa), Tbx18, and Tbx20 in the atrioventricular bundle and proximal bundle branches. Cx40 was precociously upregulated in the atrioventricular bundle of Tbx3 mutants. Moreover, the atrioventricular bundle and branches failed to exit the cell cycle in Tbx3 mutant embryos. Finally, Tbx3-deficient embryos developed outflow tract malformations and ventricular septal defects. These data reveal that Tbx3 is required for the molecular specification of the atrioventricular bundle and bundle branches and for the development of the ventricular septum and outflow tract. Our data suggest a mechanism in which Tbx3 represses differentiation into ventricular working myocardium, thereby imposing the conduction system phenotype on cells within its expression domain.


Assuntos
Nó Atrioventricular/fisiologia , Sistema de Condução Cardíaco/fisiologia , Cardiopatias Congênitas/genética , Proteínas com Domínio T/fisiologia , Animais , Fator Natriurético Atrial/metabolismo , Nó Atrioventricular/embriologia , Ciclo Celular/genética , Embrião de Galinha , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Condução Cardíaco/embriologia , Cardiopatias Congênitas/patologia , Humanos , Camundongos , Camundongos Knockout , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Proteína alfa-5 de Junções Comunicantes
18.
Circ Res ; 101(9): 902-9, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17823370

RESUMO

The pulmonary vein is sleeved by myocardium, which is a major source of atrial fibrillation and is involved in congenital sinus venosus defects. Little is known about the cellular origin and mechanism of formation of the pulmonary myocardium. We observed a biphasic process of pulmonary myocardium formation in mice. Firstly, a myocardial cell population forms de novo at the connection of the pulmonary vein and the atrium. Genetic labeling revealed that atrial cells do not contribute to this population, indicating it forms by differentiation of pulmonary mesenchymal cells. Secondly, these pulmonary myocardial cells initiate a phase of rapid proliferation and form the pulmonary myocardial sleeve. Pitx2c-deficient mice do not develop a pulmonary myocardial sleeve because they fail to form the initial pulmonary myocardial cells. Genetic-labeling analyses demonstrated that whereas the systemic venous return derives from Nkx2-5-negative precursors, the pulmonary myocardium derives from Nkx2-5-expressing precursors, indicating a distinct origin of the 2 venous systems. Nkx2-5 and its target gap-junction gene Cx40 are expressed in the atria and in the pulmonary myocardium but not in the systemic venous return, which expresses the essential pacemaker channel Hcn4. When Nkx2-5 protein level was lowered in a hypomorphic model, the pulmonary myocardium switched to a Cx40-negative, Hcn4-positive phenotype resembling that of the systemic venous return. In conclusion, our data suggest a cellular mechanism for pulmonary myocardium formation and highlight the key roles played by Pitx2c and Nkx2-5 in its formation and identity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/fisiologia , Veias Pulmonares/embriologia , Veias Pulmonares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Fibrilação Atrial/fisiopatologia , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Coração/embriologia , Coração/fisiologia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Mesoderma/citologia , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , Fenótipo , Veias Pulmonares/citologia , Fatores de Transcrição/genética , Proteína Homeobox PITX2
19.
Circ Res ; 100(3): 354-62, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17234970

RESUMO

The sinoatrial node, which resides at the junction of the right atrium and the superior caval vein, contains specialized myocardial cells that initiate the heart beat. Despite this fundamental role in heart function, the embryonic origin and mechanisms of localized formation of the sinoatrial node have not been defined. Here we show that subsequent to the formation of the Nkx2-5-positive heart tube, cells bordering the inflow tract of the heart tube give rise to the Nkx2-5-negative myocardial cells of the sinoatrial node and the sinus horns. Using genetic models, we show that as the myocardium of the heart tube matures, Nkx2-5 suppresses pacemaker channel gene Hcn4 and T-box transcription factor gene Tbx3, thereby enforcing a progressive confinement of their expression to the forming Nkx2-5-negative sinoatrial node and sinus horns. Thus, Nkx2-5 is essential for establishing a gene expression border between the atrium and sinoatrial node. Tbx3 was found to suppress chamber differentiation, providing an additional mechanism by which the Tbx3-positive sinoatrial node is shielded from differentiating into atrial myocardium. Pitx2c-deficient fetuses form sinoatrial nodes with indistinguishable molecular signatures at both the right and left sinuatrial junction, indicating that Pitx2c functions within the left/right pathway to suppress a default program for sinuatrial node formation on the left. Our molecular pathway provides a mechanism for how pacemaker activity becomes progressively relegated to the most recently added components of the venous pole of the heart and, ultimately, to the junction of the right atrium and superior caval vein.


Assuntos
Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Átrios do Coração/embriologia , Ventrículos do Coração/embriologia , Proteínas de Homeodomínio/fisiologia , Canais Iônicos/biossíntese , Nó Sinoatrial/embriologia , Proteínas com Domínio T/fisiologia , Fatores de Transcrição/fisiologia , Animais , Fator Natriurético Atrial , Biomarcadores , Padronização Corporal/genética , Miosinas Cardíacas/biossíntese , Miosinas Cardíacas/genética , Conexinas/biossíntese , Conexinas/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Reporter , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Imageamento Tridimensional , Hibridização In Situ , Canais Iônicos/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/metabolismo , Cadeias Leves de Miosina/biossíntese , Cadeias Leves de Miosina/genética , Peptídeo Natriurético Tipo C/biossíntese , Peptídeo Natriurético Tipo C/genética , Precursores de Proteínas/biossíntese , Precursores de Proteínas/genética , Proteínas Recombinantes de Fusão/fisiologia , Nó Sinoatrial/citologia , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Troponina I/biossíntese , Troponina I/genética , Proteína alfa-5 de Junções Comunicantes , Proteína Homeobox PITX2
20.
Circ Res ; 99(4): 351-3, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16873717

RESUMO

Closure of the primary atrial foramen is achieved by fusion of the atrioventricular cushions with the mesenchymal cap on the leading edge of the muscular primary atrial septum. A fourth component involved is the vestibular spine, originally described by His in 1880 as an intra-cardiac continuation of the extra-cardiac mesenchyme of the dorsal mesocardium. The morphogenesis of this area is of great clinical interest, because of the high incidence of atrial and atrioventricular septal defects. Nonetheless, the origin of the participating components is largely unknown. Here we report that the primary atrial foramen is surrounded in its entirety by mesenchyme derived from endocardium. A second population of mesenchyme not derived from endocardium was observed at the caudal margin of the mesenchymal atrial cap, entirely embedded within the mesenchyme derived from endocardium and contiguous with the mesenchyme of the dorsal mesocardium. Our reconstructions show this second population does indeed take the form of a short spine, albeit that it is the right pulmonary ridge, rather than this spine, that protrudes into the atrial lumen. From the stance of morphological description, therefore, there is little thus far to substantiate the existence of an atrial spine.


Assuntos
Átrios do Coração/citologia , Septos Cardíacos/fisiologia , Mesoderma/fisiologia , Desenvolvimento Embrionário , Átrios do Coração/embriologia , Septos Cardíacos/citologia , Septos Cardíacos/embriologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA