RESUMO
Following the detection of the new coronavirus1 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics of coronavirus disease 2019 (COVID-19). In response, many European countries have implemented non-pharmaceutical interventions, such as the closure of schools and national lockdowns. Here we study the effect of major interventions across 11 European countries for the period from the start of the COVID-19 epidemics in February 2020 until 4 May 2020, when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks previously, allowing for the time lag between infection and death. We use partial pooling of information between countries, with both individual and shared effects on the time-varying reproduction number (Rt). Pooling allows for more information to be used, helps to overcome idiosyncrasies in the data and enables more-timely estimates. Our model relies on fixed estimates of some epidemiological parameters (such as the infection fatality rate), does not include importation or subnational variation and assumes that changes in Rt are an immediate response to interventions rather than gradual changes in behaviour. Amidst the ongoing pandemic, we rely on death data that are incomplete, show systematic biases in reporting and are subject to future consolidation. We estimate that-for all of the countries we consider here-current interventions have been sufficient to drive Rt below 1 (probability Rt < 1.0 is greater than 99%) and achieve control of the epidemic. We estimate that across all 11 countries combined, between 12 and 15 million individuals were infected with SARS-CoV-2 up to 4 May 2020, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions-and lockdowns in particular-have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.
Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Número Básico de Reprodução , COVID-19 , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/transmissão , Europa (Continente)/epidemiologia , Humanos , Pneumonia Viral/mortalidade , Pneumonia Viral/transmissãoRESUMO
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), large-scale social contact surveys are now longitudinally measuring the fundamental changes in human interactions in the face of the pandemic and non-pharmaceutical interventions. Here, we present a model-based Bayesian approach that can reconstruct contact patterns at 1-year resolution even when the age of the contacts is reported coarsely by 5 or 10-year age bands. This innovation is rooted in population-level consistency constraints in how contacts between groups must add up, which prompts us to call the approach presented here the Bayesian rate consistency model. The model can also quantify time trends and adjust for reporting fatigue emerging in longitudinal surveys through the use of computationally efficient Hilbert Space Gaussian process priors. We illustrate estimation accuracy on simulated data as well as social contact data from Europe and Africa for which the exact age of contacts is reported, and then apply the model to social contact data with coarse information on the age of contacts that were collected in Germany during the COVID-19 pandemic from April to June 2020 across five longitudinal survey waves. We estimate the fine age structure in social contacts during the early stages of the pandemic and demonstrate that social contact intensities rebounded in an age-structured, non-homogeneous manner. The Bayesian rate consistency model provides a model-based, non-parametric, computationally tractable approach for estimating the fine structure and longitudinal trends in social contacts and is applicable to contemporary survey data with coarsely reported age of contacts as long as the exact age of survey participants is reported.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Teorema de Bayes , SARS-CoV-2 , Pandemias , Inquéritos e QuestionáriosRESUMO
Introduction: To prioritize and tailor interventions for ending AIDS by 2030 in Africa, it is important to characterize the population groups in which HIV viraemia is concentrating. Methods: We analysed HIV testing and viral load data collected between 2013-2019 from the open, population-based Rakai Community Cohort Study (RCCS) in Uganda, to estimate HIV seroprevalence and population viral suppression over time by gender, one-year age bands and residence in inland and fishing communities. All estimates were standardized to the underlying source population using census data. We then assessed 95-95-95 targets in their ability to identify the populations in which viraemia concentrates. Results: Following the implementation of Universal Test and Treat, the proportion of individuals with viraemia decreased from 4.9% (4.6%-5.3%) in 2013 to 1.9% (1.7%-2.2%) in 2019 in inland communities and from 19.1% (18.0%-20.4%) in 2013 to 4.7% (4.0%-5.5%) in 2019 in fishing communities. Viraemia did not concentrate in the age and gender groups furthest from achieving 95-95-95 targets. Instead, in both inland and fishing communities, women aged 25-29 and men aged 30-34 were the 5-year age groups that contributed most to population-level viraemia in 2019, despite these groups being close to or had already achieved 95-95-95 targets. Conclusions: The 95-95-95 targets provide a useful benchmark for monitoring progress towards HIV epidemic control, but do not contextualize underlying population structures and so may direct interventions towards groups that represent a marginal fraction of the population with viraemia.
RESUMO
HIV incidence in eastern and southern Africa has historically been concentrated among girls and women aged 15-24 years. As new cases decline with HIV interventions, population-level infection dynamics may shift by age and gender. Here, we integrated population-based surveillance of 38,749 participants in the Rakai Community Cohort Study and longitudinal deep-sequence viral phylogenetics to assess how HIV incidence and population groups driving transmission have changed from 2003 to 2018 in Uganda. We observed 1,117 individuals in the incidence cohort and 1,978 individuals in the transmission cohort. HIV viral suppression increased more rapidly in women than men, however incidence declined more slowly in women than men. We found that age-specific transmission flows shifted: whereas HIV transmission to girls and women (aged 15-24 years) from older men declined by about one-third, transmission to women (aged 25-34 years) from men that were 0-6 years older increased by half in 2003 to 2018. Based on changes in transmission flows, we estimated that closing the gender gap in viral suppression could have reduced HIV incidence in women by half in 2018. This study suggests that HIV programmes to increase HIV suppression in men are critical to reduce incidence in women, close gender gaps in infection burden and improve men's health in Africa.
Assuntos
Infecções por HIV , Masculino , Humanos , Feminino , Idoso , Infecções por HIV/epidemiologia , Uganda/epidemiologia , Estudos de Coortes , Genômica , IncidênciaRESUMO
HIV incidence in eastern and southern Africa has historically been concentrated among girls and women aged 15-24 years. As new cases decline with HIV interventions, population-level infection dynamics may shift by age and gender. Here, we integrated population-based surveillance of 38,749 participants in the Rakai Community Cohort Study and longitudinal deep sequence viral phylogenetics to assess how HIV incidence and population groups driving transmission have changed from 2003 to 2018 in Uganda. We observed 1,117 individuals in the incidence cohort and 1,978 individuals in the transmission cohort. HIV viral suppression increased more rapidly in women than men, however incidence declined more slowly in women than men. We found that age-specific transmission flows shifted, while HIV transmission to girls and women (aged 15-24 years) from older men declined by about one third, transmission to women (aged 25-34 years) from men that were 0-6 years older increased by half in 2003 to 2018. Based on changes in transmission flows, we estimated that closing the gender gap in viral suppression could have reduced HIV incidence in women by half in 2018. This study suggests that HIV programs to increase HIV suppression in men are critical to reduce incidence in women, close gender gaps in infection burden and improve men's health in Africa.
RESUMO
Background: More than 300 cities including the city of Amsterdam in the Netherlands have joined the UNAIDS Fast-Track Cities initiative, committing to accelerate their HIV response and end the AIDS epidemic in cities by 2030. To support this commitment, we aimed to estimate the number and proportion of Amsterdam HIV infections that originated within the city, from Amsterdam residents. We also aimed to estimate the proportion of recent HIV infections during the 5-year period 2014-2018 in Amsterdam that remained undiagnosed. Methods: We located diagnosed HIV infections in Amsterdam using postcode data (PC4) at time of registration in the ATHENA observational HIV cohort, and used HIV sequence data to reconstruct phylogeographically distinct, partially observed Amsterdam transmission chains. Individual-level infection times were estimated from biomarker data, and used to date the phylogenetically observed transmission chains as well as to estimate undiagnosed proportions among recent infections. A Bayesian Negative Binomial branching process model was used to estimate the number, size, and growth of the unobserved Amsterdam transmission chains from the partially observed phylogenetic data. Results: Between 1 January 2014 and 1 May 2019, there were 846 HIV diagnoses in Amsterdam residents, of whom 516 (61%) were estimated to have been infected in 2014-2018. The rate of new Amsterdam diagnoses since 2014 (104 per 100,000) remained higher than the national rates excluding Amsterdam (24 per 100,000), and in this sense Amsterdam remained a HIV hotspot in the Netherlands. An estimated 14% [12-16%] of infections in Amsterdan MSM in 2014-2018 remained undiagnosed by 1 May 2019, and 41% [35-48%] in Amsterdam heterosexuals, with variation by region of birth. An estimated 67% [60-74%] of Amsterdam MSM infections in 2014-2018 had an Amsterdam resident as source, and 56% [41-70%] in Amsterdam heterosexuals, with heterogeneity by region of birth. Of the locally acquired infections, an estimated 43% [37-49%] were in foreign-born MSM, 41% [35-47%] in Dutch-born MSM, 10% [6-18%] in foreign-born heterosexuals, and 5% [2-9%] in Dutch-born heterosexuals. We estimate the majority of Amsterdam MSM infections in 2014-2018 originated in transmission chains that pre-existed by 2014. Conclusions: This combined phylogenetic, epidemiologic, and modelling analysis in the UNAIDS Fast-Track City Amsterdam indicates that there remains considerable potential to prevent HIV infections among Amsterdam residents through city-level interventions. The burden of locally acquired infection remains concentrated in MSM, and both Dutch-born and foreign-born MSM would likely benefit most from intensified city-level interventions. Funding: This study received funding as part of the H-TEAM initiative from Aidsfonds (project number P29701). The H-TEAM initiative is being supported by Aidsfonds (grant number: 2013169, P29701, P60803), Stichting Amsterdam Dinner Foundation, Bristol-Myers Squibb International Corp. (study number: AI424-541), Gilead Sciences Europe Ltd (grant number: PA-HIV-PREP-16-0024), Gilead Sciences (protocol numbers: CO-NL-276-4222, CO-US-276-1712, CO-NL-985-6195), and M.A.C AIDS Fund.
Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Síndrome da Imunodeficiência Adquirida/epidemiologia , Teorema de Bayes , Cidades/epidemiologia , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Homossexualidade Masculina , Humanos , Masculino , FilogeniaRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant of concern has spread rapidly across Brazil since late 2020, causing substantial infection and death waves. Here we used individual-level patient records after hospitalization with suspected or confirmed coronavirus disease 2019 (COVID-19) between 20 January 2020 and 26 July 2021 to document temporary, sweeping shocks in hospital fatality rates that followed the spread of Gamma across 14 state capitals, during which typically more than half of hospitalized patients aged 70 years and older died. We show that such extensive shocks in COVID-19 in-hospital fatality rates also existed before the detection of Gamma. Using a Bayesian fatality rate model, we found that the geographic and temporal fluctuations in Brazil's COVID-19 in-hospital fatality rates were primarily associated with geographic inequities and shortages in healthcare capacity. We estimate that approximately half of the COVID-19 deaths in hospitals in the 14 cities could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization and pandemic preparedness are critical to minimize population-wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries.
Assuntos
COVID-19 , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Brasil/epidemiologia , COVID-19/epidemiologia , Hospitais , Humanos , SARS-CoV-2RESUMO
The UK and Sweden have among the worst per-capita COVID-19 mortality in Europe. Sweden stands out for its greater reliance on voluntary, rather than mandatory, control measures. We explore how the timing and effectiveness of control measures in the UK, Sweden and Denmark shaped COVID-19 mortality in each country, using a counterfactual assessment: what would the impact have been, had each country adopted the others' policies? Using a Bayesian semi-mechanistic model without prior assumptions on the mechanism or effectiveness of interventions, we estimate the time-varying reproduction number for the UK, Sweden and Denmark from daily mortality data. We use two approaches to evaluate counterfactuals which transpose the transmission profile from one country onto another, in each country's first wave from 13th March (when stringent interventions began) until 1st July 2020. UK mortality would have approximately doubled had Swedish policy been adopted, while Swedish mortality would have more than halved had Sweden adopted UK or Danish strategies. Danish policies were most effective, although differences between the UK and Denmark were significant for one counterfactual approach only. Our analysis shows that small changes in the timing or effectiveness of interventions have disproportionately large effects on total mortality within a rapidly growing epidemic.
Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , Política de Saúde , Modelos Teóricos , COVID-19/terapia , Dinamarca/epidemiologia , Humanos , Suécia/epidemiologia , Reino Unido/epidemiologiaRESUMO
BACKGROUND: Transmission of respiratory pathogens such as SARS-CoV-2 depends on patterns of contact and mixing across populations. Understanding this is crucial to predict pathogen spread and the effectiveness of control efforts. Most analyses of contact patterns to date have focussed on high-income settings. METHODS: Here, we conduct a systematic review and individual-participant meta-analysis of surveys carried out in low- and middle-income countries and compare patterns of contact in these settings to surveys previously carried out in high-income countries. Using individual-level data from 28,503 participants and 413,069 contacts across 27 surveys we explored how contact characteristics (number, location, duration and whether physical) vary across income settings. RESULTS: Contact rates declined with age in high- and upper-middle-income settings, but not in low-income settings, where adults aged 65+ made similar numbers of contacts as younger individuals and mixed with all age-groups. Across all settings, increasing household size was a key determinant of contact frequency and characteristics, but low-income settings were characterised by the largest, most intergenerational households. A higher proportion of contacts were made at home in low-income settings, and work/school contacts were more frequent in high-income strata. We also observed contrasting effects of gender across income-strata on the frequency, duration and type of contacts individuals made. CONCLUSIONS: These differences in contact patterns between settings have material consequences for both spread of respiratory pathogens, as well as the effectiveness of different non-pharmaceutical interventions. FUNDING: This work is primarily being funded by joint Centre funding from the UK Medical Research Council and DFID (MR/R015600/1).
RESUMO
Background: Transmission of respiratory pathogens such as SARS-CoV-2 depends on patterns of contact and mixing across populations. Understanding this is crucial to predict pathogen spread and the effectiveness of control efforts. Most analyses of contact patterns to date have focused on high-income settings. Methods: Here, we conduct a systematic review and individual-participant meta-analysis of surveys carried out in low- and middle-income countries and compare patterns of contact in these settings to surveys previously carried out in high-income countries. Using individual-level data from 28,503 participants and 413,069 contacts across 27 surveys, we explored how contact characteristics (number, location, duration, and whether physical) vary across income settings. Results: Contact rates declined with age in high- and upper-middle-income settings, but not in low-income settings, where adults aged 65+ made similar numbers of contacts as younger individuals and mixed with all age groups. Across all settings, increasing household size was a key determinant of contact frequency and characteristics, with low-income settings characterised by the largest, most intergenerational households. A higher proportion of contacts were made at home in low-income settings, and work/school contacts were more frequent in high-income strata. We also observed contrasting effects of gender across income strata on the frequency, duration, and type of contacts individuals made. Conclusions: These differences in contact patterns between settings have material consequences for both spread of respiratory pathogens and the effectiveness of different non-pharmaceutical interventions. Funding: This work is primarily being funded by joint Centre funding from the UK Medical Research Council and DFID (MR/R015600/1).
Infectious diseases, particularly those caused by airborne pathogens like SARS-CoV-2, spread by social contact, and understanding how people mix is critical in controlling outbreaks. To explore these patterns, researchers typically carry out large contact surveys. Participants are asked for personal information (such as gender, age and occupation), as well as details of recent social contacts, usually those that happened in the last 24 hours. This information includes, the age and gender of the contact, where the interaction happened, how long it lasted, and whether it involved physical touch. These kinds of surveys help scientists to predict how infectious diseases might spread. But there is a problem: most of the data come from high-income countries, and there is evidence to suggest that social contact patterns differ between places. Therefore, data from these countries might not be useful for predicting how infections spread in lower-income regions. Here, Mousa et al. have collected and combined data from 27 contact surveys carried out before the COVID-19 pandemic to see how baseline social interactions vary between high- and lower-income settings. The comparison revealed that, in higher-income countries, the number of daily contacts people made decreased with age. But, in lower-income countries, younger and older individuals made similar numbers of contacts and mixed with all age groups. In higher-income countries, more contacts happened at work or school, while in low-income settings, more interactions happened at home and people were also more likely to live in larger, intergenerational households. Mousa et al. also found that gender affected how long contacts lasted and whether they involved physical contact, both of which are key risk factors for transmitting airborne pathogens. These findings can help researchers to predict how infectious diseases might spread in different settings. They can also be used to assess how effective non-medical restrictions, like shielding of the elderly and workplace closures, will be at reducing transmissions in different parts of the world.
Assuntos
COVID-19/transmissão , Transmissão de Doença Infecciosa , Adolescente , Adulto , Idoso , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Adulto JovemRESUMO
After initial declines, in mid-2020 a resurgence in transmission of novel coronavirus disease (COVID-19) occurred in the United States and Europe. As efforts to control COVID-19 disease are reintensified, understanding the age demographics driving transmission and how these affect the loosening of interventions is crucial. We analyze aggregated, age-specific mobility trends from more than 10 million individuals in the United States and link these mechanistically to age-specific COVID-19 mortality data. We estimate that as of October 2020, individuals aged 20 to 49 are the only age groups sustaining resurgent SARS-CoV-2 transmission with reproduction numbers well above one and that at least 65 of 100 COVID-19 infections originate from individuals aged 20 to 49 in the United States. Targeting interventions-including transmission-blocking vaccines-to adults aged 20 to 49 is an important consideration in halting resurgent epidemics and preventing COVID-19-attributable deaths.
Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Epidemias , Adolescente , Adulto , Fatores Etários , Número Básico de Reprodução , COVID-19/mortalidade , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Telefone Celular , Criança , Pré-Escolar , Controle de Doenças Transmissíveis , Epidemias/prevenção & controle , Humanos , Lactente , Pessoa de Meia-Idade , Modelos Teóricos , Pandemias/prevenção & controle , Instituições Acadêmicas , Estados Unidos/epidemiologia , Adulto JovemRESUMO
The SARS-CoV-2 Gamma variant spread rapidly across Brazil, causing substantial infection and death waves. We use individual-level patient records following hospitalisation with suspected or confirmed COVID-19 to document the extensive shocks in hospital fatality rates that followed Gamma's spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time periods. We show that extensive fluctuations in COVID-19 in-hospital fatality rates also existed prior to Gamma's detection, and were largely transient after Gamma's detection, subsiding with hospital demand. Using a Bayesian fatality rate model, we find that the geographic and temporal fluctuations in Brazil's COVID-19 in-hospital fatality rates are primarily associated with geographic inequities and shortages in healthcare capacity. We project that approximately half of Brazil's COVID-19 deaths in hospitals could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries. NOTE: The following manuscript has appeared as 'Report 46 - Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals' at https://spiral.imperial.ac.uk:8443/handle/10044/1/91875 . ONE SENTENCE SUMMARY: COVID-19 in-hospital fatality rates fluctuate dramatically in Brazil, and these fluctuations are primarily associated with geographic inequities and shortages in healthcare capacity.
RESUMO
Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.
Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Brasil/epidemiologia , Monitoramento Epidemiológico , Genoma Viral , Genômica , Humanos , Modelos Teóricos , Epidemiologia Molecular , Mutação , Ligação Proteica , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo , Carga ViralRESUMO
Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4-2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.
RESUMO
As of 1st June 2020, the US Centres for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly model the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We use changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. We estimate that Rt was only below one in 23 states on 1st June. We also estimate that 3.7% [3.4%-4.0%] of the total population of the US had been infected, with wide variation between states, and approximately 0.01% of the population was infectious. We demonstrate good 3 week model forecasts of deaths with low error and good coverage of our credible intervals.
Assuntos
COVID-19/epidemiologia , Pandemias/estatística & dados numéricos , Teorema de Bayes , COVID-19/transmissão , Humanos , Modelos Estatísticos , Estados Unidos/epidemiologia , Viroses/epidemiologiaRESUMO
Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.