Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem ; 463(Pt 2): 141265, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39293376

RESUMO

The role of the Maillard reaction and the accumulation of non-enzymatic glycation compounds in human milk have been scarcely considered. In this study, we investigated the proteins most susceptible to glycation, the identity of the corresponding modified residues and the quantitative relationship between protein-bound and free glycation compounds in raw human milk and, for comparison, in minimally processed infant formula and pasteurized bovine milk. In human milk, total protein-bound lysine modifications were up to 10% of the counterparts in infant formula, while Nε-carboxymethyllysine reached up to 27% of the concentration in the other two products. We demonstrated that the concentration of free pyrraline and methylglyoxal-hydroimidazolone were of the same order of magnitude in the three milk types. Our results delineate how the occurrence of some glycation compounds in human milk can be an unavoidable part of the breastfeeding and not an exclusive attribute of infant formulas and pasteurized bovine milk.

2.
Front Endocrinol (Lausanne) ; 14: 1135157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091842

RESUMO

A vast literature strongly suggests that the endocannabinoid (eCB) system and related bioactive lipids (the paracannabinoid system) contribute to numerous physiological processes and are involved in pathological conditions such as obesity, type 2 diabetes, and intestinal inflammation. The gut paracannabinoid system exerts a prominent role in gut physiology as it affects motility, permeability, and inflammatory responses. Another important player in the regulation of host metabolism is the intestinal microbiota, as microorganisms are indispensable to protect the intestine against exogenous pathogens and potentially harmful resident microorganisms. In turn, the composition of the microbiota is regulated by intestinal immune responses. The intestinal microbial community plays a fundamental role in the development of the innate immune system and is essential in shaping adaptive immunity. The active interplay between microbiota and paracannabinoids is beginning to appear as potent regulatory system of the gastrointestinal homeostasis. In this context, oleoylethanolamide (OEA), a key component of the physiological systems involved in the regulation of dietary fat consumption, energy homeostasis, intestinal motility, and a key factor in modulating eating behavior, is a less studied lipid mediator. In the small intestine namely duodenum and jejunum, levels of OEA change according to the nutrient status as they decrease during food deprivation and increase upon refeeding. Recently, we and others showed that OEA treatment in rodents protects against inflammatory events and changes the intestinal microbiota composition. In this review, we briefly define the role of OEA and of the gut microbiota in intestinal homeostasis and recapitulate recent findings suggesting an interplay between OEA and the intestinal microorganisms.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Endocanabinoides/metabolismo , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA