Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Proteomics ; 17(7)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27709814

RESUMO

The ubiquitin-proteasome pathway (UPP) plays a critical role in the degradation of proteins implicated in cell cycle control, signal transduction, DNA damage response, apoptosis and immune response. Proteasome inhibitors can inhibit the growth of a broad spectrum of human cancer cells by altering the balance of intracellular proteins. However, the targets of these compounds in acute myeloid leukemia (AML) cells have not been fully characterized. Herein, we combined large-scale quantitative analysis by SILAC-MS and targeted quantitative proteomic analysis in order to identify proteins regulated upon proteasome inhibition in two AML cell lines displaying different stages of maturation: immature KG1a cells and mature U937 cells. In-depth data analysis enabled accurate quantification of more than 7000 proteins in these two cell lines. Several candidates were validated by selected reaction monitoring (SRM) measurements in a large number of samples. Despite the broad range of proteins known to be affected by proteasome inhibition, such as heat shock (HSP) and cell cycle proteins, our analysis identified new differentially regulated proteins, including IL-32, MORF family mortality factors and apoptosis inducing factor SIVA, a target of p53. It could explain why proteasome inhibitors induce stronger apoptotic responses in immature AML cells.


Assuntos
Biologia Computacional , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Bortezomib/farmacologia , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Ontologia Genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Leucócitos/metabolismo , Leucócitos/patologia , Leupeptinas/farmacologia , Anotação de Sequência Molecular , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
J Immunol ; 195(11): 5472-81, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26512138

RESUMO

The protein tyrosine kinase LCK plays a key role in TCR signaling, and its activity is dynamically controlled by the tyrosine kinase C-terminal Src kinase (CSK) and the tyrosine phosphatase CD45. CSK is brought in contiguity to LCK via binding to a transmembrane adaptor known as phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG). The lack of a blatant phenotype in PAG-deficient mice has impeded our understanding of the mechanisms through which PAG exerts its negative-regulatory role in TCR signaling. We used quantitative mass spectrometry and both thymocytes and CD4(+) T cells from mice in which a tag for affinity purification was knocked in the gene coding for PAG to determine the composition and dynamics of the multiprotein complexes that are found around PAG over 5 min of activation. Most of the high-confidence interactions that we observed were previously unknown. Using phosphoproteomic analysis, PAG showed low levels of tyrosine phosphorylation in resting primary mouse CD4(+) T cells; the levels of tyrosine phosphorylation increased and reached a maximum 2 min after stimulation. Analysis of the dynamics of association of the protein tyrosine phosphatase PTPN22 and lipid phosphatase SHIP-1 with PAG following T cell activation suggests that both cooperate with CSK to terminate T cell activation. Our findings provide a model of the role for PAG in mouse primary CD4(+) T cells that is consistent with recent phosphoproteomic studies of the Jurkat T cell line but difficult to reconcile with former biochemical studies indicating that PAG is constitutively phosphorylated in resting T cells and rapidly dephosphorylated once the TCR is engaged.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Timócitos/imunologia , Quinases da Família src/metabolismo , Animais , Proteína Tirosina Quinase CSK , Células Cultivadas , Células-Tronco Embrionárias , Ativação Enzimática , Técnicas de Introdução de Genes , Inositol Polifosfato 5-Fosfatases , Peptídeos e Proteínas de Sinalização Intercelular , Ativação Linfocitária/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Fosfoproteínas/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Cultura Primária de Células , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Proteômica , Receptores de Antígenos de Linfócitos T/imunologia , Espectrometria de Massas em Tandem
3.
Mol Cell Proteomics ; 14(3): 771-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25505153

RESUMO

The analysis and management of MS data, especially those generated by data independent MS acquisition, exemplified by SWATH-MS, pose significant challenges for proteomics bioinformatics. The large size and vast amount of information inherent to these data sets need to be properly structured to enable an efficient and straightforward extraction of the signals used to identify specific target peptides. Standard XML based formats are not well suited to large MS data files, for example, those generated by SWATH-MS, and compromise high-throughput data processing and storing. We developed mzDB, an efficient file format for large MS data sets. It relies on the SQLite software library and consists of a standardized and portable server-less single-file database. An optimized 3D indexing approach is adopted, where the LC-MS coordinates (retention time and m/z), along with the precursor m/z for SWATH-MS data, are used to query the database for data extraction. In comparison with XML formats, mzDB saves ∼25% of storage space and improves access times by a factor of twofold up to even 2000-fold, depending on the particular data access. Similarly, mzDB shows also slightly to significantly lower access times in comparison with other formats like mz5. Both C++ and Java implementations, converting raw or XML formats to mzDB and providing access methods, will be released under permissive license. mzDB can be easily accessed by the SQLite C library and its drivers for all major languages, and browsed with existing dedicated GUIs. The mzDB described here can boost existing mass spectrometry data analysis pipelines, offering unprecedented performance in terms of efficiency, portability, compactness, and flexibility.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Espectrometria de Massas/métodos , Conjuntos de Dados como Assunto , Células Epiteliais/metabolismo , Humanos , Proteoma/análise
4.
Mol Syst Biol ; 11(1): 771, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25561571

RESUMO

In eukaryotic cells, intracellular protein breakdown is mainly performed by the ubiquitin-proteasome system. Proteasomes are supramolecular protein complexes formed by the association of multiple sub-complexes and interacting proteins. Therefore, they exhibit a very high heterogeneity whose function is still not well understood. Here, using a newly developed method based on the combination of affinity purification and protein correlation profiling associated with high-resolution mass spectrometry, we comprehensively characterized proteasome heterogeneity and identified previously unknown preferential associations within proteasome sub-complexes. In particular, we showed for the first time that the two main proteasome subtypes, standard proteasome and immunoproteasome, interact with a different subset of important regulators. This trend was observed in very diverse human cell types and was confirmed by changing the relative proportions of both 20S proteasome forms using interferon-γ. The new method developed here constitutes an innovative and powerful strategy that could be broadly applied for unraveling the dynamic and heterogeneous nature of other biologically relevant supramolecular protein complexes.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios e Motivos de Interação entre Proteínas , Linhagem Celular Tumoral , Cromatografia de Afinidade , Cromatografia Líquida , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Espectrometria de Massas , Proteômica/métodos , Espectrometria de Massas em Tandem , Células U937
5.
Mol Cell Proteomics ; 13(12): 3421-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205225

RESUMO

Obstructive nephropathy is a frequently encountered situation in newborns. In previous studies, the urinary peptidome has been analyzed for the identification of clinically useful biomarkers of obstructive nephropathy. However, the urinary proteome has not been explored yet and should allow additional insight into the pathophysiology of the disease. We have analyzed the urinary proteome of newborns (n = 5/group) with obstructive nephropathy using label free quantitative nanoLC-MS/MS allowing the identification and quantification of 970 urinary proteins. We next focused on proteins exclusively regulated in severe obstructive nephropathy and identified Arginase 1 as a potential candidate molecule involved in the development of obstructive nephropathy, located at the crossroad of pro- and antifibrotic pathways. The reduced urinary abundance of Arginase 1 in obstructive nephropathy was verified in independent clinical samples using both Western blot and MRM analysis. These data were confirmed in situ in kidneys obtained from a mouse obstructive nephropathy model. In addition, we also observed increased expression of Arginase 2 and increased total arginase activity in obstructed mouse kidneys. mRNA expression analysis of the related arginase pathways indicated that the pro-fibrotic arginase-related pathway is activated during obstructive nephropathy. Taken together we have identified a new actor in the development of obstructive nephropathy in newborns using quantitative urinary proteomics and shown its involvement in an in vivo model of disease. The present study demonstrates the relevance of such a quantitative urinary proteomics approach with clinical samples for a better understanding of the pathophysiology and for the discovery of potential therapeutic targets.


Assuntos
Arginase/urina , Hidronefrose/urina , Rim/metabolismo , Proteoma/metabolismo , Insuficiência Renal/urina , Animais , Arginase/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Hidronefrose/congênito , Hidronefrose/patologia , Lactente , Recém-Nascido , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteoma/genética , Proteômica/métodos , Insuficiência Renal/congênito , Insuficiência Renal/patologia , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 110(44): 17927-32, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24127601

RESUMO

DNA lesions that block transcription may cause cell death even when repaired, if transcription does not restart to reestablish cellular metabolism. However, transcription resumption after individual DNA-lesion repair remains poorly described in mechanistic terms and its players are largely unknown. The general transcription factor II H (TFIIH) is a major actor of both nucleotide excision repair subpathways of which transcription-coupled repair highlights the interplay between DNA repair and transcription. Using an unbiased proteomic approach, we have identified the protein eleven-nineteen lysine-rich leukemia (ELL) as a TFIIH partner. Here we show that ELL is recruited to UV-damaged chromatin in a Cdk7- dependent manner (a component of the cyclin-dependent activating kinase subcomplex of TFIIH). We demonstrate that depletion of ELL strongly hinders RNA polymerase II (RNA Pol II) transcription resumption after lesion removal and DNA gap filling. Lack of ELL was also observed to increase RNA Pol II retention to the chromatin during this process. Identifying ELL as an essential player for RNA Pol II restart during cellular DNA damage response opens the way to obtaining a mechanistic description of transcription resumption after DNA repair.


Assuntos
Reparo do DNA/fisiologia , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIH/metabolismo , Ativação Transcricional/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Sequência de Bases , Western Blotting , Linhagem Celular , Imunoprecipitação da Cromatina , Clonagem Molecular , Primers do DNA/genética , Recuperação de Fluorescência Após Fotodegradação , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
7.
Mol Cell Proteomics ; 12(3): 687-99, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23242550

RESUMO

Through protein degradation, the proteasome plays fundamental roles in different cell compartments. Although the composition of the 20S catalytic core particle (CP) has been well documented, little is known about the composition and dynamics of the regulatory complexes that play a crucial role in its activity, or about how they associate with the CP in different cell compartments, different cell lines, and in response to external stimuli. Because of difficulties performing acceptable cell fractionation while maintaining complex integrity, it has been challenging to characterize proteasome complexes by proteomic approaches. Here, we report an integrated protocol, combining a cross-linking procedure on intact cells with cell fractionation, proteasome immuno-purification, and robust label-free quantitative proteomic analysis by mass spectrometry to determine the distribution and dynamics of cellular proteasome complexes in leukemic cells. Activity profiles of proteasomes were correlated fully with the composition of protein complexes and stoichiometry. Moreover, our results suggest that, at the subcellular level, proteasome function is regulated by dynamic interactions between the 20S CP and its regulatory proteins-which modulate proteasome activity, stability, localization, or substrate uptake-rather than by profound changes in 20S CP composition. Proteasome plasticity was observed both in the 20S CP and in its network of interactions following IFNγ stimulation. The fractionation protocol also revealed specific proteolytic activities and structural features of low-abundance microsomal proteasomes from U937 and KG1a cells. These could be linked to their important roles in the endoplasmic reticulum associated degradation pathway in leukemic cells.


Assuntos
Espaço Intracelular/enzimologia , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Western Blotting , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Humanos , Interferon gama/farmacologia , Espaço Intracelular/metabolismo , Cinética , Leucemia/metabolismo , Leucemia/patologia , Espectrometria de Massas/métodos , Microscopia Confocal , Microssomos/enzimologia , Microssomos/metabolismo , Complexos Multienzimáticos/química , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Células U937
8.
Mol Cell Proteomics ; 12(3): 736-48, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275444

RESUMO

Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors that play a key role in cellular adaptation to hypoxia. HIF proteins are composed of an α subunit regulated by oxygen pressure (essentially HIF1α or HIF2α) and a constitutively expressed ß subunit. These proteins are often overexpressed in cancer cells, and HIF overexpression frequently correlates with poor prognosis, making HIF proteins promising therapeutic targets. HIF proteins are involved in melanoma initiation and progression; however, the specific function of HIF2 in melanoma has not yet been studied comprehensively. Identifying protein complexes is a valuable way to uncover protein function, and affinity purification coupled with mass spectrometry and label-free quantification is a reliable method for this approach. We therefore applied quantitative interaction proteomics to identify exhaustively the nuclear complexes containing HIF2α in a human melanoma cell line, 501mel. We report, for the first time, a high-throughput analysis of the interactome of an HIF subunit. Seventy proteins were identified that interact with HIF2α, including some well-known HIF partners and some new interactors. The new HIF2α partners microphthalmia-associated transcription factor, SOX10, and AP2α, which are master actors of melanoma development, were confirmed via co-immunoprecipitation experiments. Their ability to bind to HIF1α was also tested: microphthalmia-associated transcription factor and SOX10 were confirmed as HIF1α partners, but the transcription factor AP2α was not. AP2α expression correlates with low invasive capacities. Interestingly, we demonstrated that when HIF2α was overexpressed, only cells expressing large amounts of AP2α exhibited decreased invasive capacities in hypoxia relative to normoxia. The simultaneous presence of both transcription factors therefore reduces cells' invasive properties. Knowledge of the HIF2α interactome is thus a useful resource for investigating the general mechanisms of HIF function and regulation, and here we reveal unexpected, distinct roles for the HIF1 and HIF2 isoforms in melanoma progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunoprecipitação , Espectrometria de Massas/métodos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteoma/genética , Interferência de RNA , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Homologia de Sequência de Aminoácidos , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo
9.
Mol Cell Proteomics ; 12(8): 2293-312, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23674615

RESUMO

In order to map the extracellular or membrane proteome associated with the vasculature and the stroma in an embryonic organism in vivo, we developed a biotinylation technique for chicken embryo and combined it with mass spectrometry and bioinformatic analysis. We also applied this procedure to implanted tumors growing on the chorioallantoic membrane or after the induction of granulation tissue. Membrane and extracellular matrix proteins were the most abundant components identified. Relative quantitative analysis revealed differential protein expression patterns in several tissues. Through a bioinformatic approach, we determined endothelial cell protein expression signatures, which allowed us to identify several proteins not yet reported to be associated with endothelial cells or the vasculature. This is the first study reported so far that applies in vivo biotinylation, in combination with robust label-free quantitative proteomics approaches and bioinformatic analysis, to an embryonic organism. It also provides the first description of the vascular and matrix proteome of the embryo that might constitute the starting point for further developments.


Assuntos
Proteínas Aviárias/metabolismo , Embrião de Galinha/metabolismo , Membrana Corioalantoide/metabolismo , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Animais , Biotinilação , Linhagem Celular Tumoral , Membrana Corioalantoide/lesões , Humanos , Intestino Delgado/embriologia , Intestino Delgado/metabolismo , Rim/embriologia , Rim/metabolismo , Fígado/embriologia , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Proteoma
10.
Proc Natl Acad Sci U S A ; 109(5): 1673-8, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307629

RESUMO

Interleukin-33 (IL-33) (NF-HEV) is a chromatin-associated nuclear cytokine from the IL-1 family, which has been linked to important diseases, including asthma, rheumatoid arthritis, ulcerative colitis, and cardiovascular diseases. IL-33 signals through the ST2 receptor and drives cytokine production in type 2 innate lymphoid cells (ILCs) (natural helper cells, nuocytes), T-helper (Th)2 lymphocytes, mast cells, basophils, eosinophils, invariant natural killer T (iNKT), and natural killer (NK) cells. We and others recently reported that, unlike IL-1ß and IL-18, full-length IL-33 is biologically active independently of caspase-1 cleavage and that processing by caspases results in IL-33 inactivation. We suggested that IL-33, which is released upon cellular damage, may function as an endogenous danger signal or alarmin, similar to IL-1α or high-mobility group box 1 protein (HMGB1). Here, we investigated the possibility that IL-33 activity may be regulated by proteases released during inflammation. Using a combination of in vitro and in vivo approaches, we demonstrate that neutrophil serine proteases cathepsin G and elastase can cleave full-length human IL-33(1-270) and generate mature forms IL-33(95-270), IL-33(99-270), and IL-33(109-270). These forms are produced by activated human neutrophils ex vivo, are biologically active in vivo, and have a ~10-fold higher activity than full-length IL-33 in cellular assays. Murine IL-33 is also cleaved by neutrophil cathepsin G and elastase, and both full-length and cleaved endogenous IL-33 could be detected in the bronchoalveolar lavage fluid in an in vivo model of acute lung injury associated with neutrophil infiltration. We propose that the inflammatory microenvironment may exacerbate disease-associated functions of IL-33 through the generation of highly active mature forms.


Assuntos
Catepsina G/metabolismo , Interleucinas/metabolismo , Elastase de Leucócito/metabolismo , Processamento de Proteína Pós-Traducional , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Interleucina-33 , Camundongos , Camundongos Endogâmicos BALB C , Ativação de Neutrófilo , Neutrófilos/metabolismo
11.
J Proteome Res ; 13(6): 3027-37, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24804812

RESUMO

The proteasome is the main proteolytic system involved in intracellular proteins homeostasis in eukaryotes. Although the structure of proteasome complexes has been well characterized, the distribution of its activators and associated proteins are less studied. Here, we determine the composition and the stoichiometry of proteasome complexes and their associated proteins in a wide range of human cell lines using a one-step affinity purification method and a label-free quantitative proteomic approach. We show that proteasome complexes are highly dynamic protein assemblies, the activity of which being regulated at different levels by variations in the stoichiometry of bound regulators, in the composition of catalytic subunits and associated proteins, and in the rate of the 20S catalytic core complex assembly.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Linhagem Celular , Homeostase , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Peso Molecular , Complexo de Endopeptidases do Proteassoma/química , Mapas de Interação de Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Proteômica
12.
Gastroenterology ; 144(4): 771-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313268

RESUMO

BACKGROUND & AIMS: Glucose is absorbed into intestine cells via the sodium glucose transporter 1 (SGLT-1) and glucose transporter 2 (GLUT2); various peptides and hormones control this process. Apelin is a peptide that regulates glucose homeostasis and is produced by proximal digestive cells; we studied whether glucose modulates apelin secretion by enterocytes and the effects of apelin on intestinal glucose absorption. METHODS: We characterized glucose-related luminal apelin secretion in vivo and ex vivo by mass spectroscopy and immunologic techniques. The effects of apelin on (14)C-labeled glucose transport were determined in jejunal loops and in mice following apelin gavage. We determined levels of GLUT2 and SGLT-1 proteins and phosphorylation of AMPKα2 by immunoblotting. The net effect of apelin on intestinal glucose transepithelial transport was determined in mice. RESULTS: Glucose stimulated luminal secretion of the pyroglutaminated apelin-13 isoform ([Pyr-1]-apelin-13) in the small intestine of mice. Apelin increased specific glucose flux through the gastric epithelial barrier in jejunal loops and in vivo following oral glucose administration. Conversely, pharmacologic apelin blockade in the intestine reduced the increased glycemia that occurs following oral glucose administration. Apelin activity was associated with phosphorylation of AMPKα2 and a rapid increase of the GLUT2/SGLT-1 protein ratio in the brush border membrane. CONCLUSIONS: Glucose amplifies its own transport from the intestinal lumen to the bloodstream by increasing luminal apelin secretion. In the lumen, active apelin regulates carbohydrate flux through enterocytes by promoting AMPKα2 phosphorylation and modifying the ratio of SGLT-1:GLUT2. The glucose-apelin cycle might be pharmacologically handled to regulate glucose absorption and assess better control of glucose homeostasis.


Assuntos
Carboidratos/farmacocinética , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Análise de Variância , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Western Blotting , Cromatografia Líquida/métodos , Modelos Animais de Doenças , Glucose/farmacologia , Transportador de Glucose Tipo 2/metabolismo , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Distribuição Aleatória , Valores de Referência , Transportador 1 de Glucose-Sódio/metabolismo
13.
Mol Cell Proteomics ; 11(8): 527-39, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22518033

RESUMO

To perform differential studies of complex protein mixtures, strategies for reproducible and accurate quantification are needed. Here, we evaluated a quantitative proteomic workflow based on nanoLC-MS/MS analysis on an LTQ-Orbitrap-VELOS mass spectrometer and label-free quantification using the MFPaQ software. In such label-free quantitative studies, a compromise has to be found between two requirements: repeatability of sample processing and MS measurements, allowing an accurate quantification, and high proteomic coverage of the sample, allowing quantification of minor species. The latter is generally achieved through sample fractionation, which may induce experimental bias during the label-free comparison of samples processed, and analyzed independently. In this work, we wanted to evaluate the performances of MS intensity-based label-free quantification when a complex protein sample is fractionated by one-dimensional SDS-PAGE. We first tested the efficiency of the analysis without protein fractionation and could achieve quite good quantitative repeatability in single-run analysis (median coefficient of variation of 5%, 99% proteins with coefficient of variation <48%). We show that sample fractionation by one-dimensional SDS-PAGE is associated with a moderate decrease of quantitative measurement repeatability while largely improving the depth of proteomic coverage. We then applied the method for a large scale proteomic study of the human endothelial cell response to inflammatory cytokines, such as TNFα, interferon γ, and IL1ß, which allowed us to finely decipher at the proteomic level the biological pathways involved in endothelial cell response to proinflammatory cytokines.


Assuntos
Cromatografia Líquida/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Mediadores da Inflamação/farmacologia , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Proteínas/análise , Proteínas/genética , Proteínas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos
14.
Proteomics ; 13(1): 37-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23135970

RESUMO

The ubiquitin-proteasome system allows the targeted degradation of proteins and plays a critical role in the regulation of many cellular processes. Proteasome inhibition is a recent antitumor therapeutic strategy and bortezomib was the first proteasome inhibitor approved for clinical use. In this study, we used the NB4 cell line to investigate the effects of bortezomib toward acute promyelocytic leukemia cells before and after retinoic acid-induced differentiation. We showed that apoptosis level after bortezomib treatment is higher in NB4 cells than in differentiated NB4 cells. To compare early protein variations upon bortezomib treatment in both NB4 cell populations, we performed a quantitative proteomic analysis based on iTRAQ peptide labeling followed by data analysis with in-house developed scripts. This strategy revealed the regulation of 14 proteins principally involved in protein stress response and apoptosis in NB4 cells after proteasome inhibition. Altogether, our results suggest that the differential level of apoptosis induced by bortezomib treatment in both NB4 cell populations could result from distinct protein toxicity level.


Assuntos
Ácidos Borônicos/administração & dosagem , Leucemia Promielocítica Aguda/metabolismo , Proteínas , Pirazinas/administração & dosagem , Tretinoína/administração & dosagem , Antineoplásicos/administração & dosagem , Apoptose , Bortezomib , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Estudos de Avaliação como Assunto , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/administração & dosagem , Proteínas/metabolismo , Proteínas/toxicidade , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Ubiquitina
15.
EMBO J ; 28(24): 3808-19, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19927118

RESUMO

Prp43p is a RNA helicase required for pre-mRNA splicing and for the synthesis of large and small ribosomal subunits. The molecular functions and modes of regulation of Prp43p during ribosome biogenesis remain unknown. We demonstrate that the G-patch protein Pfa1p, a component of pre-40S pre-ribosomal particles, directly interacts with Prp43p. We also show that lack of Gno1p, another G-patch protein associated with Prp43p, specifically reduces Pfa1p accumulation, whereas it increases the levels of the pre-40S pre-ribosomal particle component Ltv1p. Moreover, cells lacking Pfa1p and depleted for Ltv1p show strong 20S pre-rRNA accumulation in the cytoplasm and reduced levels of 18S rRNA. Finally, we demonstrate that Pfa1p stimulates the ATPase and helicase activities of Prp43p. Truncated Pfa1p variants unable to fully stimulate the activity of Prp43p fail to complement the 20S pre-rRNA processing defect of Deltapfa1 cells depleted for Ltv1p. Our results strongly suggest that stimulation of ATPase/helicase activities of Prp43p by Pfa1p is required for efficient 20S pre-rRNA-to-18S rRNA conversion.


Assuntos
Adenosina Trifosfatases/química , RNA Helicases DEAD-box/fisiologia , Regulação Fúngica da Expressão Gênica , Fosfopiruvato Hidratase/fisiologia , RNA Helicases/química , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação ao GTP/química , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Precursores de RNA/química , RNA Ribossômico/química , RNA Ribossômico 18S/química , Ribossomos/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/fisiologia
16.
FASEB J ; 25(11): 3790-802, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21764995

RESUMO

Muscle atrophy prevails in numerous diseases (cancer cachexia, renal failure, infections, etc.), mainly results from elevated proteolysis, and is accelerated by bed rest. This largely contributes to increased health costs. Devising new strategies to prevent muscle wasting is a major clinical challenge. The ubiquitin proteasome system (UPS) degrades myofibrillar proteins, but the precise mechanisms responsible for actin breakdown are surprisingly poorly characterized. We report that chimeric flag-actin was destabilized and polyubiquitinylated in stably transfected C2C12 myotubes treated with the catabolic agent dexamethasone (1 µM) and that only proteasome inhibitors blocked its breakdown. Actin polyubiquitinylation was also detected in wild-type C2C12 myotubes and human muscle biopsies from control participants and patients with cancer. The muscle-specific E3 ubiquitin ligase MuRF1 is up-regulated in catabolic conditions and polyubiquitinylates components of the thick filament. We also demonstrate that recombinant GST-MuRF1 physically interacted and polyubiquitinylated actin in vitro and that MuRF1 is a critical component for actin breakdown, since MuRF1 siRNA stabilized flag-actin. These data identify unambiguously the abundant contractile protein actin as a target of the UPS in skeletal muscle both in vitro and in vivo, further supporting the need for new strategies blocking specifically the activation of this pathway in muscle wasting conditions.


Assuntos
Actinas/metabolismo , Proteínas Musculares/metabolismo , Miofibrilas/metabolismo , Poliubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Dexametasona/farmacologia , Humanos , Leupeptinas/farmacologia , Camundongos , Músculos/metabolismo , Oligopeptídeos , Peptídeos/química , Peptídeos/metabolismo , Inibidores de Proteassoma , RNA Interferente Pequeno/farmacologia , Ratos , Proteínas com Motivo Tripartido
17.
Cell Microbiol ; 13(5): 692-704, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21143571

RESUMO

Changes in the cell envelope composition of mycobacteria cause major changes in cytokine profiles of infected antigen presenting cells. We describe here the modulation of inflammatory responses by Mycobacterium abscessus, an emerging pathogen in cystic fibrosis. M. abscessus is able to switch from a smooth (S) to a rough (R) morphotype by the loss of a surface glycopeptidolipid. R variants are associated with severe clinical forms and a 'hyper-proinflammatory' response in ex vivo and in vivo models. Using partitioning of cell surface components we found that a complex fraction, more abundant in R variants than in S variants, made a major contribution to the TLR-2-dependent hyper-proinflammatory response induced by R variants. Lipoproteins were the main TLR-2 agonists in this fraction, consistent with the larger amounts of 16 lipoproteins in cell surface extracts from R variants; 15 out of 16 being more strongly induced in R variant than in S variant. Genetic interruption of glycopeptidolipid pathway in wild-type S variant resulted in R phenotype with similar induction of lipoprotein genes. In conclusion, R morphotype in M. abscessus is associated with increased synthesis/exposure at the cell surface of lipoproteins, these changes profoundly modifying the innate immune response through TLR-2-dependent mechanisms.


Assuntos
Lipoproteínas/metabolismo , Mycobacterium/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Animais , Membrana Celular/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Citocinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Glicopeptídeos/imunologia , Glicopeptídeos/metabolismo , Células HEK293 , Humanos , Inflamação/imunologia , Lipoproteínas/imunologia , Macrófagos , Camundongos , Mycobacterium/imunologia , Mycobacterium/patogenicidade , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/microbiologia , Fenótipo , Reação em Cadeia da Polimerase , Receptor 2 Toll-Like/agonistas , Virulência
18.
Mol Cell Proteomics ; 9(5): 1006-21, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20093276

RESUMO

Cerebrospinal fluid (CSF) is the biological fluid in closest contact with the brain and thus contains proteins of neural cell origin. Hence, CSF is a biochemical window into the brain and is particularly attractive for the search for biomarkers of neurological diseases. However, as in the case of other biological fluids, one of the main analytical challenges in proteomic characterization of the CSF is the very wide concentration range of proteins, largely exceeding the dynamic range of current analytical approaches. Here, we used the combinatorial peptide ligand library technology (ProteoMiner) to reduce the dynamic range of protein concentration in CSF and unmask previously undetected proteins by nano-LC-MS/MS analysis on an LTQ-Orbitrap mass spectrometer. This method was first applied on a large pool of CSF from different sources with the aim to better characterize the protein content of this fluid, especially for the low abundance components. We were able to identify 1212 proteins in CSF, and among these, 745 were only detected after peptide library treatment. However, additional difficulties for clinical studies of CSF are the low protein concentration of this fluid and the low volumes typically obtained after lumbar puncture, precluding the conventional use of ProteoMiner with large volume columns for treatment of patient samples. The method has thus been optimized to be compatible with low volume samples. We could show that the treatment is still efficient with this miniaturized protocol and that the dynamic range of protein concentration is actually reduced even with small amounts of beads, leading to an increase of more than 100% of the number of identified proteins in one LC-MS/MS run. Moreover, using a dedicated bioinformatics analytical work flow, we found that the method is reproducible and applicable for label-free quantification of series of samples processed in parallel.


Assuntos
Proteínas do Líquido Cefalorraquidiano/análise , Biblioteca de Peptídeos , Proteômica/métodos , Cromatografia Líquida , Humanos , Ligantes , Espectrometria de Massas , Microesferas , Neurogênese , Reprodutibilidade dos Testes , Software , Coloração e Rotulagem
19.
J Biol Chem ; 285(18): 13364-71, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20200153

RESUMO

THAP1 is a sequence-specific DNA binding factor that regulates cell proliferation through modulation of target genes such as the cell cycle-specific gene RRM1. Mutations in the THAP1 DNA binding domain, an atypical zinc finger (THAP-zf), have recently been found to cause DYT6 dystonia, a neurological disease characterized by twisting movements and abnormal postures. In this study, we report that THAP1 shares sequence characteristics, in vivo expression patterns and protein partners with THAP3, another THAP-zf protein. Proteomic analyses identified HCF-1, a potent transcriptional coactivator and cell cycle regulator, and O-GlcNAc transferase (OGT), the enzyme that catalyzes the addition of O-GlcNAc, as major cellular partners of THAP3. THAP3 interacts with HCF-1 through a consensus HCF-1-binding motif (HBM), a motif that is also present in THAP1. Accordingly, THAP1 was found to bind HCF-1 in vitro and to associate with HCF-1 and OGT in vivo. THAP1 and THAP3 belong to a large family of HCF-1 binding factors since seven other members of the human THAP-zf protein family were identified, which harbor evolutionary conserved HBMs and bind to HCF-1. Chromatin immunoprecipitation (ChIP) assays and RNA interference experiments showed that endogenous THAP1 mediates the recruitment of HCF-1 to the RRM1 promoter during endothelial cell proliferation and that HCF-1 is essential for transcriptional activation of RRM1. Together, our findings suggest HCF-1 is an important cofactor for THAP1. Interestingly, our results also provide an unexpected link between DYT6 and DYT3 (X-linked dystonia-parkinsonism) dystonias because the gene encoding the THAP1/DYT6 protein partner OGT maps within the DYT3 critical region on Xq13.1.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Cromossomos Humanos X/metabolismo , Proteínas de Ligação a DNA/metabolismo , Distonia/metabolismo , Fator C1 de Célula Hospedeira/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Acetilglucosamina , Motivos de Aminoácidos , Proteínas Reguladoras de Apoptose/genética , Proliferação de Células , Cromossomos Humanos X/genética , Proteínas de Ligação a DNA/genética , Distonia/genética , Células Endoteliais , Doenças Genéticas Ligadas ao Cromossomo X , Células HeLa , Fator C1 de Célula Hospedeira/genética , Humanos , N-Acetilglucosaminiltransferases/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteômica , Ribonucleosídeo Difosfato Redutase , Transcrição Gênica/genética , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , Dedos de Zinco
20.
Expert Rev Proteomics ; 8(4): 459-81, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21819302

RESUMO

This article covers the latest contributions of proteomics to the structural and functional characterization of proteasomes and their associated proteins, but also to the detection of proteasomes as clinical biomarkers in diseases. Proteasomes are highly heterogenous supramolecular complexes and constitute important cellular proteases controlling the pool of proteins involved in key cellular functions. The comprehension of the structure/function relationship of proteasomes is therefore of major interest in biology. Numerous biochemical methods have been employed to purify proteasomes, and have led to the identification of complexes of various compositions - depending on the experimental conditions and the type of strategy used. In association with protein separation and enrichment techniques, modern mass spectrometry instruments and mass spectrometry-based quantitative methods, they have led to unprecedented breakthroughs in the in-depth analysis of the diversity and dynamics of proteasome composition and localization under various stimuli or pathological contexts. Proteasome inhibitors are now used in clinics for the treatment of cancer, and recent studies propose that the proteasome should be considered as a predictive biomarker for various pathologies.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Pesquisa Translacional Biomédica , Humanos , Espectrometria de Massas , Complexo de Endopeptidases do Proteassoma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA