Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nucleic Acids Res ; 48(2): 770-787, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799629

RESUMO

Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6). Additionally, we report two individuals from a family with multiple cancer incidences carrying a RPL9 missense variant. Analysis of cells from these individuals reveals that despite the variants both driving pre-rRNA processing defects and 80S monosome reduction, the downstream effects are remarkably different. Cells carrying the 5'UTR variant stabilize TP53 and impair the growth and differentiation of erythroid cells. In contrast, ribosomes incorporating the missense variant erroneously read through UAG and UGA stop codons of mRNAs. Metabolic profiles of cells carrying the 5'UTR variant reveal an increased metabolism of amino acids and a switch from glycolysis to gluconeogenesis while those of cells carrying the missense variant reveal a depletion of nucleotide pools. These findings indicate that variants in the same RP gene can drive similar ribosome biogenesis defects yet still have markedly different downstream consequences and clinical impacts.


Assuntos
Anemia de Diamond-Blackfan/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Regiões 5' não Traduzidas/genética , Adolescente , Adulto , Anemia de Diamond-Blackfan/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Criança , Células Eritroides , Feminino , Humanos , Masculino , Mutação/genética , Precursores de RNA/genética , RNA Mensageiro/genética , Sequenciamento do Exoma
2.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068921

RESUMO

Bicistronic reporter assays have been instrumental for transgene expression, understanding of internal ribosomal entry site (IRES) translation, and identification of novel cap-independent translational elements (CITE). We observed a large methodological variability in the use of bicistronic reporter assays and data presentation or normalization procedures. Therefore, we systematically searched the literature for bicistronic IRES reporter studies and analyzed methodological details, data visualization, and normalization procedures. Two hundred fifty-seven publications were identified using our search strategy (published 1994-2020). Experimental studies on eukaryotic adherent cell systems and the cell-free translation assay were included for further analysis. We evaluated the following methodological details for 176 full text articles: the bicistronic reporter design, the cell line or type, transfection methods, and time point of analyses post-transfection. For the cell-free translation assay, we focused on methods of in vitro transcription, type of translation lysate, and incubation times and assay temperature. Data can be presented in multiple ways: raw data from individual cistrons, a ratio of the two, or fold changes thereof. In addition, many different control experiments have been suggested when studying IRES-mediated translation. In addition, many different normalization and control experiments have been suggested when studying IRES-mediated translation. Therefore, we also categorized and summarized their use. Our unbiased analyses provide a representative overview of bicistronic IRES reporter use. We identified parameters that were reported inconsistently or incompletely, which could hamper data reproduction and interpretation. On the basis of our analyses, we encourage adhering to a number of practices that should improve transparency of bicistronic reporter data presentation and improve methodological descriptions to facilitate data replication.


Assuntos
Genes Reporter , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , Sequências Reguladoras de Ácido Nucleico , Ribossomos/metabolismo , Animais , Humanos , Ribossomos/genética
3.
Biochim Biophys Acta ; 1866(2): 330-338, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27815156

RESUMO

In human ribosomal RNAs, over 200 residues are modified by specific, RNA-driven enzymatic complexes or stand-alone, RNA-independent enzymes. In most cases, modification sites are placed in specific positions within important functional areas of the ribosome. Some evidence indicates that the altered control in ribosomal RNA modifications may affect ribosomal function during mRNA translation. Here we provide an overview of the connections linking ribosomal RNA modifications to ribosome function, and suggest how aberrant modifications may affect the control of the expression of key cancer genes, thus contributing to tumor development. In addition, the future perspectives in this field are discussed.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/etiologia , Edição de RNA , RNA Ribossômico/genética , Humanos , Neoplasias/genética
4.
Biochem Biophys Res Commun ; 483(3): 936-940, 2017 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-28082201

RESUMO

Protein synthesis is one of the main cellular functions inhibited during hypertonic challenge. The subsequent accumulation of the compatible osmolyte betaine during the later adaptive response allows not only recovery of translation but also its stimulation. In this paper, we show that betaine modulates translation by enhancing the formation of cap-independent 48 S pre-initiation complexes, leaving cap-dependent 48 S pre-initiation complexes basically unchanged. In the presence of betaine, CrPV IRES- and sodium-dependent neutral amino acid transporter-2 (SNAT2) 5'-UTR-driven translation is 2- and 1.5-fold stimulated in MCF7 cells, respectively. Thus, betaine could provide an advantage in translation of messengers coding for proteins implicated in the response of cells to different stressors, which are often recognized by ribosomal 40 S subunit through simplified cap-independent mechanisms.


Assuntos
Betaína/metabolismo , Betaína/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Capuzes de RNA/metabolismo , Regiões 5' não Traduzidas , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Sistema Livre de Células , Humanos , Soluções Hipertônicas , Luciferases/genética , Luciferases/metabolismo , Células MCF-7 , Pressão Osmótica , Polirribossomos/metabolismo , Biossíntese de Proteínas/genética , Coelhos , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo
5.
Nucleic Acids Res ; 43(22): e153, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26240374

RESUMO

Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on transcripts, providing precious snapshots of translation in vivo. Here we propose RiboAbacus, a mathematical model that for the first time incorporates imaging data in a predictive model of transcript-specific ribosome densities and translational efficiencies. RiboAbacus uses a mechanistic model of ribosome dynamics, enabling the quantification of the relative importance of different features (such as codon usage and the 5' ramp effect) in determining the accuracy of predictions. The model has been optimized in the human Hek-293 cell line to fit thousands of images of human polysomes obtained by atomic force microscopy, from which we could get a reference distribution of the number of ribosomes per mRNA with unmatched resolution. After validation, we applied RiboAbacus to three case studies of known transcriptome-proteome datasets for estimating the translational efficiencies, resulting in an increased correlation with corresponding proteomes. RiboAbacus is an intuitive tool that allows an immediate estimation of crucial translation properties for entire transcriptomes, based on easily obtainable transcript expression levels.


Assuntos
Modelos Biológicos , Polirribossomos/ultraestrutura , Biossíntese de Proteínas , Transcriptoma , Animais , Células HEK293 , Humanos , Células MCF-7 , Microscopia de Força Atômica , Proteômica , Coelhos , Reticulócitos/ultraestrutura , Ribossomos/ultraestrutura , Software
6.
FASEB J ; 29(8): 3472-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25934701

RESUMO

Dyskerin is a pseudouridine (ψ) synthase involved in fundamental cellular processes including uridine modification in rRNA and small nuclear RNA and telomere stabilization. Dyskerin functions are altered in X-linked dyskeratosis congenita (X-DC) and cancer. Dyskerin's role in rRNA pseudouridylation has been suggested to underlie the alterations in mRNA translation described in cells lacking dyskerin function, although relevant direct evidences are currently lacking. Our purpose was to establish definitely whether defective dyskerin function might determine an intrinsic ribosomal defect leading to an altered synthetic activity. Therefore, ribosomes from dyskerin-depleted human cells were purified and 1) added to a controlled reticulocyte cell-free system devoid of ribosomes to study mRNA translation; 2) analyzed for protein contamination and composition by mass spectrometry, 3) analyzed for global pseudouridylation levels. Ribosomes purified from dyskerin-depleted cells showed altered translational fidelity and internal ribosome entry site (IRES)-mediated translation. These ribosomes displayed reduced uridine modification, whereas they were not different in terms of protein contamination or ribosomal protein composition with respect to ribosomes from matched control cells with full dyskerin activity. In conclusion, lack of dyskerin function in human cells induces a defect in rRNA uridine modification, which is sufficient to alter ribosome activity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas/genética , Ribossomos/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sistema Livre de Células/metabolismo , Humanos , Células MCF-7 , Proteínas Nucleares/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , Ribossomos/genética , Telômero/genética , Telômero/metabolismo
7.
Int J Cancer ; 136(5): E272-81, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25273595

RESUMO

Tumors characterized by an intense ribosome biogenesis often display a more aggressive behavior. Ribosomal RNA (rRNA) synthesis is controlled at several levels, including the epigenetic regulation of the condensation of chromatin portions containing rRNA genes. JHDM1B (Jumonji C histone demethylase 1B) is a histone demethylase able to regulate the accessibility of rRNA genes. In this study, we aimed to define the contribution of JHDM1B expression to the features of breast cancer, a tumor type whose behavior is related to the rate of ribosome biogenesis. We show that, in breast cancer-derived cell lines, the increase in rRNA transcription that follows JHDM1B knock-down is mirrored by an augmented cell proliferation only in p53 compromised cells, while p53 competent cells undergo cellular senescence and death. The latter effect appears to be mediated by a p38-dependent phosphorylation of p53, inducing the expression of p15(Ink4b) and p21(Waf1). In breast cancers, lower JHDM1B expression correlates with an increased size of specifically stained nucleolar organized regions, a morphological parameter directly related to the rate of ribosome biogenesis and with a poorer prognosis. In addition, in tumors lacking the controller function of p53, a lower expression of JHDM1B is associated with an increased tumor size at diagnosis. Altogether, our data indicate that epigenetic activation of rDNA genes induced by JHDM1B depletion is associated with a p53-dependent growth arrest, but may promote cancer cell growth when p53 is lacking.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Western Blotting , Neoplasias da Mama/mortalidade , Senescência Celular , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Feminino , Humanos , Técnicas Imunoenzimáticas , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
8.
Histopathology ; 66(2): 244-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367684

RESUMO

AIMS: To investigate the immunohistochemical expression of dyskerin, a biomarker involved in ribosome production and telomere maintenance, in human fetal, adult and neoplastic bile ducts, and possible correlations with cholangiocarcinoma aggressiveness. METHODS AND RESULTS: Sixty consecutive intrahepatic cholangiocarcinomas were collected and used for tissue microarray construction (total: 176 cores); clinical data and follow-up were also collected. Five fetal and 10 normal adult livers were included as controls. Automated immunohistochemistry for dyskerin, p53, and Ki67, and nucleolar silver staining, were performed. In normal livers, dyskerin expression was negative in smaller bile ducts (mean 44.8 µm) and positive in bile ducts of larger diameter (mean 116.1 µm; P < 0.001). Expression was positive in 56.7% of cholangiocarcinomas, and correlated with p53 mutation (P = 0.008) and a higher proliferative (Ki67) index (P = 0.003), which were included as markers of tumour aggressiveness. Finally, dyskerin-positive cholangiocarcinomas showed a negative trend in disease-free survival (P = 0.078) on univariate analysis. CONCLUSIONS: The non-neoplastic biliary tree seems to progressively lose dyskerin expression from the major branches to the peripheral portal bile ducts. Similarly, intrahepatic cholangiocarcinomas showed two patterns of dyskerin expression, and the dyskerin-positive phenotype seemed to characterize more aggressive cholangiocarcinomas.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/análise , Proteínas de Ciclo Celular/biossíntese , Colangiocarcinoma/patologia , Proteínas Nucleares/biossíntese , Adulto , Idoso , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/mortalidade , Ductos Biliares Intra-Hepáticos/embriologia , Ductos Biliares Intra-Hepáticos/metabolismo , Proteínas de Ciclo Celular/análise , Colangiocarcinoma/metabolismo , Colangiocarcinoma/mortalidade , Intervalo Livre de Doença , Feminino , Feto , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/análise , Modelos de Riscos Proporcionais , Análise Serial de Tecidos
9.
Nucleic Acids Res ; 41(17): 8308-18, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23821664

RESUMO

Dyskerin is a nucleolar protein encoded by the DKC1 gene that (i) stabilizes the RNA component of the telomerase complex, and (ii) drives the site-specific pseudouridilation of rRNA. It is known that the partial lack of dyskerin function causes a defect in the translation of a subgroup of mRNAs containing internal ribosome entry site (IRES) elements such as those encoding for the tumor suppressors p27 and p53. In this study, we aimed to analyze what is the effect of the lack of dyskerin on the IRES-mediated translation of mRNAs encoding for vascular endothelial growth factor (VEGF). We transiently reduced dyskerin expression and measured the levels of the IRES-mediated translation of the mRNA encoding for VEGF in vitro in transformed and primary cells. We demonstrated a significant increase in the VEGF IRES-mediated translation after dyskerin knock-down. This translational modulation induces an increase in VEGF production in the absence of a significant upregulation in VEGF mRNA levels. The analysis of a list of viral and cellular IRESs indicated that dyskerin depletion can differentially affect IRES-mediated translation. These results indicate for the first time that dyskerin inhibition can upregulate the IRES translation initiation of specific mRNAs.


Assuntos
Regiões 5' não Traduzidas , Proteínas de Ciclo Celular/fisiologia , Proteínas Nucleares/fisiologia , Iniciação Traducional da Cadeia Peptídica , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Interferência de RNA , RNA Mensageiro/química , RNA Viral/química , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/biossíntese
10.
Carcinogenesis ; 35(10): 2314-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25123131

RESUMO

Colorectal cancer (CRC) is one of the major causes of cancer death worldwide. The development of novel anti-CRC agents able to overcome drug resistance and/or off-target toxicity is of pivotal importance. The mammalian target of rapamycin (mTOR) plays a critical role in CRC, regulating protein translation and controlling cell growth, proliferation, metabolism and survival. The aim of this study was to explore the effect of a combination of three natural compounds, eicosapentaenoic acid-free fatty acid (EPA-FFA), epigallocatechin-3-gallate (EGCG) and proanthocyanidins (grape seed [GS] extract) at low cytotoxic concentrations on CRC cells and test their activity on mTOR and translational regulation. The CRC cell lines HCT116 and SW480 were treated for 24h with combinations of EPA-FFA (0-150 µM), EGCG (0-175 µM) and GS extract (0-15 µM) to evaluate the effect on cell viability. The low cytotoxic combination of EPA-FFA 150 µM, EGCG 175 µM and GS extract 15 µM completely inhibited the mTOR signaling in HCT116 and SW480 cells, reaching an effect stronger than or comparable to that of the mTOR inhibitor Rapamycin in HCT116 or SW480 cells, respectively. Moreover, the treatment led to changes of protein translation of ribosomal proteins, c-Myc and cyclin D1. In addition, we found a reduction of clonal capability in both cell lines, with block of cell cycle in G0G1 and induction of apoptosis. Our data suggest that the low cytotoxic combination of EPA-FFA, EGCG and GS extract, tested for the first time here, inhibits mTOR signaling and thus could be considered for CRC treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Catequina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Ácido Eicosapentaenoico/farmacologia , Proantocianidinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Catequina/administração & dosagem , Catequina/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Ácido Eicosapentaenoico/administração & dosagem , Extrato de Sementes de Uva/farmacologia , Humanos , Proantocianidinas/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
BMC Cancer ; 14: 361, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24884608

RESUMO

BACKGROUND: There is a body of evidence that shows a link between tumorigenesis and ribosome biogenesis. The precursor of mature 18S, 28S and 5.8S ribosomal RNAs is transcribed from the ribosomal DNA gene (rDNA), which exists as 300-400 copies in the human diploid genome. Approximately one half of these copies are epigenetically silenced, but the exact role of epigenetic regulation on ribosome biogenesis is not completely understood. In this study we analyzed the methylation profiles of the rDNA promoter and of the 5' regions of 18S and 28S in breast cancer. METHODS: We analyzed rDNA methylation in 68 breast cancer tissues of which the normal counterpart was partially available (45/68 samples) using the MassARRAY EpiTYPER assay, a sensitive and quantitative method with single base resolution. RESULTS: We found that rDNA locus tended to be hypermethylated in tumor compared to matched normal breast tissues and that the DNA methylation level of several CpG units within the rDNA locus was associated to nuclear grade and to nucleolar size of tumor tissues. In addition we identified a subgroup of samples in which large nucleoli were associated with very limited or absent rDNA hypermethylation in tumor respect to matched normal tissue. CONCLUSIONS: In conclusion, we suggest that rDNA is an important target of epigenetic regulation in breast tumors and that rDNA methylation level is associated to nucleolar size.


Assuntos
Neoplasias da Mama/genética , Carcinoma/genética , Metilação de DNA/genética , DNA Ribossômico/genética , Idoso , Neoplasias da Mama/patologia , Carcinoma/patologia , Nucléolo Celular/genética , Nucléolo Celular/ultraestrutura , Ilhas de CpG/genética , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética
12.
Biomedicines ; 12(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255260

RESUMO

The traditional perception of ribosomes as uniform molecular machines has been revolutionized by recent discoveries, revealing a complex landscape of ribosomal heterogeneity. Opposing the conventional belief in interchangeable ribosomal entities, emerging studies underscore the existence of specialized ribosomes, each possessing unique compositions and functions. Factors such as cellular and tissue specificity, developmental and physiological states, and external stimuli, including circadian rhythms, significantly influence ribosome compositions. For instance, muscle cells and neurons are characterized by distinct ribosomal protein sets and dynamic behaviors, respectively. Furthermore, alternative forms of ribosomal RNA (rRNAs) and their post-transcriptional modifications add another dimension to this heterogeneity. These variations, orchestrated by spatial, temporal, and conditional factors, enable the manifestation of a broad spectrum of specialized ribosomes, each tailored for potentially distinct functions. Such specialization not only impacts mRNA translation and gene expression but also holds significant implications for broader biological contexts, notably in the realm of cancer research. As the understanding of ribosomal diversity deepens, it also paves the way for exploring novel avenues in cellular function and offers a fresh perspective on the molecular intricacies of translation.

13.
NAR Cancer ; 6(1): zcae005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38406265

RESUMO

snoRNAs are a class of non-coding RNAs known to guide site specifically RNA modifications such as 2'-O-methylation and pseudouridylation. Recent results regarding snoRNA alterations in cancer has been made available and suggest their potential evaluation as diagnostic and prognostic biomarkers. A large part of these data, however, was not consistently confirmed and failed to provide mechanistic insights on the contribution of altered snoRNA expression to the neoplastic process. Here, we aim to critically review the available literature on snoRNA in cancer focusing on the studies elucidating the functional consequences of their deregulation. Beyond the canonical guide function in RNA processing and modification we also considered additional roles in which snoRNA, in various forms and through different modalities, are involved and that have been recently reported.

14.
Biochim Biophys Acta ; 1825(1): 101-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22079382

RESUMO

Many human pathological conditions, not linked to genetic alterations of oncogenes or tumor suppressors, are nevertheless associated with an increased risk of developing cancer, and some of them are characterized by quantitative and/or qualitative changes in ribosome biogenesis. Indeed, there is evidence that both an up-regulation of ribosome biogenesis, such as that occurring during the abnormal stimulation of cell growth, and intrinsic dysfunctions of ribosomes, such as those characterizing a series of inherited disorders, show an increased incidence of tumor onset. Here we discuss some recent insights into the mechanisms by which these alterations in ribosome biogenesis may facilitate tumorigenesis.


Assuntos
Genes Supressores de Tumor , Neoplasias/genética , Ribossomos/metabolismo , Transformação Celular Neoplásica/genética , Regulação para Baixo , Humanos
15.
J Cell Sci ; 124(Pt 17): 3017-28, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21878508

RESUMO

The tumour suppressor p53 negatively controls cell cycle progression in response to perturbed ribosome biogenesis in mammalian cells, thus coordinating growth with proliferation. Unlike mammalian cells, p53 is not involved in the growth control of proliferation in yeasts and flies. We investigated whether a p53-independent mechanism of response to inadequate ribosome biogenesis rate is also present in mammalian cells. We studied the effect of specific inhibition of rRNA synthesis on cell cycle progression in human cancer cell lines using the small-interfering RNA procedure to silence the POLR1A gene, which encodes the catalytic subunit of RNA polymerase I. We found that interference of POLR1A inhibited the synthesis of rRNA and hindered cell cycle progression in cells with inactivated p53, as a consequence of downregulation of the transcription factor E2F-1. Downregulation of E2F-1 was due to release of the ribosomal protein L11, which inactivated the E2F-1-stabilising function of the E3 ubiquitin protein ligase MDM2. These results demonstrated the existence of a p53-independent mechanism that links cell growth to cell proliferation in mammalian cells, and suggested that selective targeting of the RNA polymerase I transcription machinery might be advisable to hinder proliferation of p53-deficient cancer cells.


Assuntos
Fator de Transcrição E2F1/genética , RNA Polimerase I/genética , RNA Ribossômico/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Domínio Catalítico , Ciclo Celular/genética , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Regulação para Baixo , Fator de Transcrição E2F1/metabolismo , Inativação Gênica , Células HCT116 , Humanos , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , Transcrição Gênica , Transfecção , Proteína Supressora de Tumor p53/metabolismo
16.
Biochem Biophys Res Commun ; 431(2): 321-5, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23291172

RESUMO

In mammalian cells, adaptation to hypertonic conditions leads to the activation of an array of early (cell shrinkage, regulatory volume increase) and late (accumulation of compatible osmolytes) responses and increased level of HSPs (heat shock proteins). Protein synthesis is strongly inhibited few minutes after the hypertonic challenge as demonstrated in whole cells and as reproduced under controlled conditions in cell-free systems. Different mechanisms known to mediate the accumulation of HSP70, such as mRNA transcription and stabilization, require fully active protein synthesis. We show that the 5'-untranslated region of HSP70 messenger drives a hypertonicity-resistant translation (up to 0.425 osmol/kg of water), whereas cap-dependent protein synthesis is almost totally blocked under the same conditions. The results, obtained in cell-free systems and in whole cells, might help to explain why HSP70 is accumulated in cells when total protein synthesis is impaired. We also observed that translation initiated by viral IRES (from Cricket paralysis virus) is highly efficient in cells exposed to hyperosmolarity, suggesting that the resistance to hypertonic conditions is a more general feature of cap-independent translation. The described mechanism may also play a role in the control of translation of other messengers encoding for proteins involved in the adaptation to hypertonicity.


Assuntos
Regiões 5' não Traduzidas , Proteínas de Choque Térmico HSP70/biossíntese , Biossíntese de Proteínas , Animais , Sistema Livre de Células , Proteínas de Choque Térmico HSP70/genética , Humanos , Células MCF-7 , Pressão Osmótica , Coelhos , Solução Salina Hipertônica
17.
Int J Mol Sci ; 14(7): 14923-35, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23867608

RESUMO

rRNA post transcriptional modifications play a role in cancer development by affecting ribosomal function. In particular, the snoRNA U50, mediating the methylation of C2848 in 28S rRNA, has been suggested as a potential tumor suppressor-like gene playing a role in breast and prostate cancers and B-cell lymphoma. Indeed, we observed the downregulation of U50 in colon cancer cell lines as well as tumors. We then investigated the relationship between U50 and proliferation in lymphocytes stimulated by phytohemagglutinin (PHA) and observed a strong decrease in U50 levels associated with a reduced C2848 methylation. This reduction was due to an alteration of U50 stability and to an increase of its consumption. Indeed, the blockade of ribosome biogenesis induced only an early decrease in U50 followed by a stabilization of U50 levels when ribosome biogenesis was almost completely blocked. Similar results were found with other snoRNAs. Lastly, we observed that U50 modulation affects ribosome efficiency in IRES-mediated translation, demonstrating that changes in the methylation levels of a single specific site on 28S rRNA may alter ribosome function. In conclusion, our results link U50 to the cellular proliferation rate and ribosome biogenesis and these findings may explain why its levels are often greatly reduced in cancers.


Assuntos
RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Metilação de DNA , Regulação para Baixo , Células HCT116 , Humanos , Oligonucleotídeos Antissenso/metabolismo , Fito-Hemaglutininas/farmacologia , RNA Ribossômico/genética , RNA Nucleolar Pequeno/antagonistas & inibidores , RNA Nucleolar Pequeno/genética , Transcrição Gênica
18.
Diagnostics (Basel) ; 13(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37046459

RESUMO

Liquid biopsy (LB) is an emerging diagnostic tool that analyzes biomarkers in the blood (and possibly in other body fluids) to provide information about tumor genetics and response to therapy. This review article provides an overview of LB applications in human cancer with a focus on breast cancer patients. LB methods include circulating tumor cells and cell-free tumor products, such as circulating tumor DNA. LB has shown potential in detecting cancer at an early stage, monitoring tumor progression and recurrence, and predicting patient response to therapy. Several studies have demonstrated its clinical utility in breast cancer patients. However, there are limitations to LB, including the lack of standardized assays and the need for further validation. Future potential applications of LB include identifying the minimal residual disease, early detection of recurrence, and monitoring treatment response in various cancer types. LB represents a promising non-invasive diagnostic tool with potential applications in breast cancer diagnosis, treatment, and management. Further research is necessary to fully understand its clinical utility and overcome its current limitations.

19.
NAR Cancer ; 5(2): zcad026, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37260601

RESUMO

RNA modifications are key regulatory factors for several biological and pathological processes. They are abundantly represented on ribosomal RNA (rRNA), where they contribute to regulate ribosomal function in mRNA translation. Altered RNA modification pathways have been linked to tumorigenesis as well as to other human diseases. In this study we quantitatively evaluated the site-specific pseudouridylation pattern in rRNA in breast cancer samples exploiting the RBS-Seq technique involving RNA bisulfite treatment coupled with a new NGS approach. We found a wide variability among patients at different sites. The most dysregulated positions in tumors turned out to be hypermodified with respect to a reference RNA. As for 2'O-methylation level of rRNA modification, we detected variable and stable pseudouridine sites, with the most stable sites being the most evolutionary conserved. We also observed that pseudouridylation levels at specific sites are related to some clinical and bio-pathological tumor features and they are able to distinguish different patient clusters. This study is the first example of the contribution that newly available high-throughput approaches for site specific pseudouridine detection can provide to the understanding of the intrinsic ribosomal changes occurring in human tumors.

20.
Mol Ther Methods Clin Dev ; 29: 473-482, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37273899

RESUMO

The identification of predictive factors for treatment of pancreatic cancer (PC) is an unmet clinical need. In the present work, we analyzed blood-derived extracellular vesicles (EVs) from patients with advanced PC in order to find a molecular signature predictive of response to therapy. We analyzed samples from 21 patients with advanced PC, all receiving first-line treatment with gemcitabine + nab-paclitaxel. Isolated EVs have been analyzed, and the results of laboratory have been matched with clinical data in order to investigate possible predictive factors. EV concentration and size were similar between responder and non-responder patients. Analysis of 37 EV surface epitopes showed a decreased expression of SSEA4 and CD81 in responder patients. We detected more than 450 expressed miRNAs in EVs. A comparative survey between responder and non-responder patients showed that at least 44 miRNAs were differently expressed. Some of these miRNAs have already been observed in relation to the survival and gemcitabine sensitivity of tumor cells. In conclusion, we showed the ability of our approach to identify EV-derived biomarkers with predictive value for therapy response in PC. Our findings are worthy of further investigation, including the analysis of samples from patients treated with different schedules and in different settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA