Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 362(1): 31-44, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28416568

RESUMO

Alzheimer's disease (AD) is characterized neuropathologically by an abundance of 1) neuritic plaques, which are primarily composed of a fibrillar 42-amino-acid amyloid-ß peptide (Aß), as well as 2) neurofibrillary tangles composed of aggregates of hyperphosporylated tau. Elevations in the concentrations of the Aß42 peptide in the brain, as a result of either increased production or decreased clearance, are postulated to initiate and drive the AD pathologic process. We initially introduced a novel class of bridged aromatics referred tγ-secretase modulatoro as γ-secretase modulators that inhibited the production of the Aß42 peptide and to a lesser degree the Aß40 peptide while concomitantly increasing the production of the carboxyl-truncated Aß38 and Aß37 peptides. These modulators potently lower Aß42 levels without inhibiting the γ-secretase-mediated proteolysis of Notch or causing accumulation of carboxyl-terminal fragments of APP. In this study, we report a large number of pharmacological studies and early assessment of toxicology characterizing a highly potent γ-secretase modulator (GSM), (S)-N-(1-(4-fluorophenyl)ethyl)-6-(6-methoxy-5-(4-methyl-1H-imidazol-1-yl)pyridin-2-yl)-4-methylpyridazin-3-amine (BPN-15606). BPN-15606 displayed the ability to significantly lower Aß42 levels in the central nervous system of rats and mice at doses as low as 5-10 mg/kg, significantly reduce Aß neuritic plaque load in an AD transgenic mouse model, and significantly reduce levels of insoluble Aß42 and pThr181 tau in a three-dimensional human neural cell culture model. Results from repeat-dose toxicity studies in rats and dose escalation/repeat-dose toxicity studies in nonhuman primates have designated this GSM for 28-day Investigational New Drug-enabling good laboratory practice studies and positioned it as a candidate for human clinical trials.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Fragmentos de Peptídeos/antagonistas & inibidores , Fenetilaminas/farmacologia , Fenetilaminas/toxicidade , Piridazinas/farmacologia , Piridazinas/toxicidade , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacocinética , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Proteínas tau/metabolismo
2.
Alzheimers Dement ; 12(5): 527-37, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26555315

RESUMO

INTRODUCTION: Stress and corticotropin-releasing factor (CRF) have been implicated as mechanistically involved in Alzheimer's disease (AD), but agents that impact CRF signaling have not been carefully tested for therapeutic efficacy or long-term safety in animal models. METHODS: To test whether antagonism of the type-1 corticotropin-releasing factor receptor (CRFR1) could be used as a disease-modifying treatment for AD, we used a preclinical prevention paradigm and treated 30-day-old AD transgenic mice with the small-molecule, CRFR1-selective antagonist, R121919, for 5 months, and examined AD pathologic and behavioral end points. RESULTS: R121919 significantly prevented the onset of cognitive impairment in female mice and reduced cellular and synaptic deficits and beta amyloid and C-terminal fragment-ß levels in both genders. We observed no tolerability or toxicity issues in mice treated with R121919. DISCUSSION: CRFR1 antagonism presents a viable disease-modifying therapy for AD, recommending its advancement to early-phase human safety trials.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Cognição/fisiologia , Modelos Animais de Doenças , Receptores de Hormônio Liberador da Corticotropina , Sinapses/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Pirimidinas , Receptores de Hormônio Liberador da Corticotropina/deficiência , Receptores de Hormônio Liberador da Corticotropina/genética
3.
PLoS One ; 11(1): e0147250, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26790099

RESUMO

Stress exposure or increased levels of corticotropin-releasing factor (CRF) induce hippocampal tau phosphorylation (tau-P) in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1). Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD), the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr) and chronic (2hr) CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF), this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.


Assuntos
Transporte Axonal/fisiologia , Hormônio Liberador da Corticotropina/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Psicológico , Proteínas tau/metabolismo , Animais , Transporte Axonal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/metabolismo
4.
PLoS One ; 10(8): e0135089, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26266541

RESUMO

Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2) and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts) and a villous pathway (giving rise to multinucleated syncytiotrophoblast). Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator) induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/ß-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of ß-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion). Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of ß-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/ß-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNFα production. The results provide valuable tools to manipulate trophoblast differentiation in vitro and to better understand the differentiation pathways that occur during early gestation.


Assuntos
Ácido Butírico/farmacologia , Diferenciação Celular , Cloreto de Lítio/farmacologia , Trofoblastos/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Galectina 1/genética , Galectina 1/metabolismo , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Macaca mulatta , Gravidez , Trofoblastos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
5.
J Alzheimers Dis ; 45(2): 639-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25649650

RESUMO

Reports from Alzheimer's disease (AD) biomarker work have shown a strong link between oxidative stress and AD neuropathology. The nonenzymatic antioxidant, glutathione (GSH), plays a crucial role in defense against reactive oxygen species and maintenance of GSH redox homeostasis. In particular, our previous studies on GSH redox imbalance have implicated oxidative stress induced by excessive reactive oxygen species as a major mediator of AD-like events, with the presence of S- glutathionylated proteins (Pr-SSG) appearing prior to overt AD neuropathology. Furthermore, evidence suggests that oxidative stress may be associated with dysfunction of the hypothalamic-pituitary-adrenal axis, leading to activation of inflammatory pathways and increased production of corticotropin-releasing factor (CRF). Therefore, to investigate whether oxidative insults can be attenuated by reduction of central CRF signaling, we administered the type-1 CRF receptor (CRFR1) selective antagonist, R121919, to AD-transgenic mice beginning in the preclinical/prepathologic period (30-day-old) for 150 days, a time point where behavioral impairments and pathologic progression should be measureable. Our results indicate that R121919 treatment can significantly reduce Pr-SSG levels and increase glutathione peroxide activity, suggesting that interference of CRFR1 signaling may be useful as a preventative therapy for combating oxidative stress in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Encéfalo , Hormônio Liberador da Corticotropina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pirimidinas/uso terapêutico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Estresse Oxidativo/genética , Presenilina-1/genética , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
6.
J Alzheimers Dis ; 43(3): 967-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25125464

RESUMO

Clinical and basic science research suggests that stress and/or changes in central stress signaling intermediates may be involved in Alzheimer's disease (AD) pathogenesis. Although the links between stress and AD remain unsettled, data from our group and others have established that stress exposure in rodents may confer susceptibility to AD pathology by inducing hippocampal tau phosphorylation (tau-P). Work in our laboratory has shown that stress-induced tau-P requires activation of the type-1 corticotropin-releasing factor receptor (CRFR1). CRF overexpressing (CRF-OE) mice are a model of chronic stress that display cognitive impairment at 9-10 month of age. In this study we used 6-7 month old CRF-OE mice to examine whether sustained exposure to CRF and stress steroids would impact hippocampal tau-P and kinase activity in the presence or absence of the CRFR1-specific antagonist, R121919, given daily for 30 days. CRF-OE mice had significantly elevated tau-P compared to wild type (WT) mice at the AT8 (S202/T204), PHF-1 (S396/404), S262, and S422 sites. Treating CRF-OE mice with R121919 blocked phosphorylation at the AT8 (S202/T204) and PHF-1 (S396/404) sites, but not at the S262 and S422 sites and reduced phosphorylation of c-Jun N Terminal Kinase (JNK). Examination of hippocampal extracts from CRF-OE mice at the ultrastructural level revealed negatively stained round/globular aggregates that were positively labeled by PHF-1. These data suggest critical roles for CRF and CRFR1 in tau-P and aggregation and may have implications for the development of AD cognitive decline.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Hipocampo/metabolismo , Agregação Patológica de Proteínas/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Proteínas tau/metabolismo , Animais , Hormônio Liberador da Corticotropina/genética , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Fosforilação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Receptores de Hormônio Liberador da Corticotropina/genética
7.
J Alzheimers Dis ; 45(4): 1175-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25697705

RESUMO

Stress exposure and the corticotropin-releasing factor (CRF) system have been implicated as mechanistically involved in both Alzheimer's disease (AD) and associated rodent models. In particular, the major stress receptor, CRF receptor type 1 (CRFR1), modulates cellular activity in many AD-relevant brain areas, and has been demonstrated to impact both tau phosphorylation and amyloid-ß (Aß) pathways. The overarching goal of our laboratory is to develop and characterize agents that impact the CRF signaling system as disease-modifying treatments for AD. In the present study, we developed a novel transgenic mouse to determine whether partial or complete ablation of CRFR1 was feasible in an AD transgenic model and whether this type of treatment could impact Aß pathology. Double transgenic AD mice (PSAPP) were crossed to mice null for CRFR1; resultant CRFR1 heterozygous (PSAPP-R1(+/-)) and homozygous (PSAPP-R1(-/-)) female offspring were used at 12 months of age to examine the impact of CRFR1 disruption on the severity of AD Aß levels and pathology. We found that both PSAPP-R1(+/-) and PSAPP-R1(-/-) had significantly reduced Aß burden in the hippocampus, insular, rhinal, and retrosplenial cortices. Accordingly, we observed dramatic reductions in Aß peptides and AßPP-CTFs, providing support for a direct relationship between CRFR1 and Aß production pathways. In summary, our results suggest that interference of CRFR1 in an AD model is tolerable and is efficacious in impacting Aß neuropathology.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Receptores de Hormônio Liberador da Corticotropina/deficiência , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA