RESUMO
Some cancer cells rely heavily on non-essential biomolecules for survival, growth, and proliferation. Enzyme based therapeutics can eliminate these biomolecules, thus specifically targeting neoplastic cells; however, enzyme therapeutics are susceptible to immune clearance, exhibit short half-lives, and require frequent administration. Encapsulation of therapeutic cargo within biocompatible and biodegradable poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) is a strategy for controlled release. Unfortunately, PLGA NPs exhibit burst release of cargo shortly after delivery or upon introduction to aqueous environments where they decompose via hydrolysis. Here, we show the generation of hybrid silica-coated PLGA (SiLGA) NPs as viable drug delivery vehicles exhibiting sub-200 nm diameters, a metastable Zeta potential, and high loading efficiency and content. Compared to uncoated PLGA NPs, SiLGA NPs offer greater retention of enzymatic activity and slow the burst release of cargo. Thus, SiLGA encapsulation of therapeutic enzymes, such as asparaginase, could reduce frequency of administration, increase half-life, and improve efficacy for patients with a range of diseases.
RESUMO
Cellular circulating biomarkers from the primary tumor such as circulating tumor cells (CTCs) and circulating hybrid cells (CHCs) have been described to harbor tumor-like phenotype and genotype. CHCs are present in higher numbers than CTCs supporting their translational potential. Methods for isolation of CHCs do not exist and are restricted to low-throughput, time consuming, and biased methodologies. We report the development of a label-free dielectrophoretic microfluidic platform facilitating enrichment of CHCs in a high-throughput and rapid fashion by depleting healthy peripheral blood mononuclear cells (PBMCs). We demonstrated up to 96.5% depletion of PBMCs resulting in 18.6-fold enrichment of cancer cells. In PBMCs from pancreatic adenocarcinoma patients, the platform enriched neoplastic cells identified by their KRAS mutant status using droplet digital PCR with one hour of processing. Enrichment was achieved in 75% of the clinical samples analyzed, establishing this approach as a promising way to non-invasively analyze tumor cells from patients.
Assuntos
Biomarcadores Tumorais/análise , Dispositivos Lab-On-A-Chip/estatística & dados numéricos , Leucócitos Mononucleares/química , Oncologia/métodos , Células Neoplásicas Circulantes/química , Desenho de Equipamento , Humanos , Células MCF-7RESUMO
Recent studies have demonstrated that gas-stabilizing particles can generate cavitating micron-sized bubbles when exposed to ultrasound, offering excellent application potential, including ultrasound imaging, drug delivery, and tumor ablation. However, the majority of the reported gas-stabilizing particles are relatively large (>200 nm), and smaller particles require high acoustic pressures to promote cavitation. Here, this paper reports the preparation of sub-100 nm gas-stabilizing nanoparticles (GSNs) that can initiate cavitation at low acoustic intensities, which can be delivered using a conventional medical ultrasound imaging system. The highly echogenic GSNs (F127-hMSN) were prepared by carefully engineering the surfaces of â¼50 nm mesoporous silica nanoparticles. It was demonstrated that the F127-hMSNs could be continuously imaged with ultrasound in buffer or biological solutions or agarose phantoms for up to 20 min. Also, the F127-hMSN can be stored in phosphate-buffered saline for at least a month with no loss in ultrasound responsiveness. The particles significantly degraded when diluted in simulated body fluids, indicating possible biodegradation of the F127-hMSNs in vivo. Furthermore, at ultrasound imaging conditions, F127-hMSNs did not cause detectable cell death, supporting the potential safety of these particles. Finally, strong cavitation activity generation by the F127-hMSNs under high-intensity focused ultrasound insonation was demonstrated and applied to effectively ablate cancer cells.