Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Res ; 28(1): 75-87, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29208629

RESUMO

Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level.


Assuntos
DNA de Neoplasias , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , RNA Neoplásico , DNA de Neoplasias/genética , DNA de Neoplasias/isolamento & purificação , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação
2.
Cytometry A ; 95(11): 1135-1144, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31637844

RESUMO

Bloodstream infection by microorganisms is a major public health concern worldwide. Millions of people per year suffer from microbial infections, and current blood culture-based diagnostic methods are time-consuming because of the low concentration of infectious microorganisms in the bloodstream. In this study, we introduce an efficient automated microfluidic system for the continuous isolation of rare infectious bacteria (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) from blood. Bacteria received a balanced force between a fluidic drag force and a periodically controlled dielectrophoretic (DEP) force from tilted electrodes to minimize cell adhesion to the electrodes, which prevented the loss of rare infectious bacteria. Target bacteria were efficiently segregated from the undesired blood cells to ensure that only the bacteria received the DEP force under the hypotonic condition, while the blood cells received no DEP force and exited the channel via a laminar flow. Thus, the bacteria were successfully extracted from the blood with a high recovery yield of 91.3%, and the limit of the bacteria concentration for isolation was 100 cfu/ml. We also developed an automated system that performed every step from blood-sample loading to application of electricity to the microfluidic chip for bacteria separation. It reduced the standard deviation of the bacteria recovery yield from 6.16 to 2.77 compared with the conventional batch process, providing stable bacteria-extraction performance and minimizing errors and bacteria loss caused by user mistakes. © 2019 International Society for Advancement of Cytometry.


Assuntos
Bactérias/isolamento & purificação , Técnicas Analíticas Microfluídicas/métodos , Sepse/microbiologia , Eletroforese/métodos , Desenho de Equipamento/métodos , Escherichia coli/isolamento & purificação , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Pseudomonas aeruginosa/isolamento & purificação , Sepse/sangue , Staphylococcus aureus/isolamento & purificação
3.
Biomed Microdevices ; 20(4): 87, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291460

RESUMO

Selective cell enrichment technologies can play an important role in both diagnostic and therapeutic areas. However, currently used cell sorting techniques have difficulties in rapidly isolating only the desired target cells from a large volume of body fluids. In this work, we developed a filtering system that can quickly separate and highly concentrate cells from a large volume of solution, depending on their size, using a silicon membrane filter. To overcome the problems caused by material limitations of the brittle silicon, we designed a novel membrane filter with various pore designs. From these designs, the most optimal design with high pore density, while preventing crack formation was derived by applying fluid dynamics simulation and near-field stress analysis. The membrane filter system using the selected design was fabricated, and cell filtration performance was evaluated. The LNCaP cell in horse blood was recovered up to 86% and enriched to 187-fold compared to initial cell populations after filtration at a flow rate of 5 mL/min. The results demonstrate that the filter presented in this study can rapidly and selectively isolate target cells from a large volume of body fluid sample.


Assuntos
Separação Celular/instrumentação , Filtração/instrumentação , Hidrodinâmica , Membranas Artificiais , Silício/química , Estresse Mecânico , Desenho de Equipamento , Humanos , Células Jurkat
4.
Anal Chem ; 86(8): 3735-42, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24641782

RESUMO

Full automation with high purity for circulating tumor cell (CTC) isolation has been regarded as a key goal to make CTC analysis a "bench-to-bedside" technology. Here, we have developed a novel centrifugal microfluidic platform that can isolate the rare cells from a large volume of whole blood. To isolate CTCs from whole blood, we introduce a disc device having the biggest sample capacity as well as manipulating blood cells for the first time. The fully automated disc platform could handle 5 mL of blood by designing the blood chamber having a triangular obstacle structure (TOS) with lateral direction. To guarantee high purity that enables molecular analysis with the rare cells, CTCs were bound to the microbeads covered with anti-EpCAM to discriminate density between CTCs and blood cells and the CTCs being heavier than blood cells were only settled under a density gradient medium (DGM) layer. To understand the movement of CTCs under centrifugal force, we performed computational fluid dynamics simulation and found that their major trajectories were the boundary walls of the DGM chamber, thereby optimizing the chamber design. After whole blood was inserted into the blood chamber of the disc platform, size- and density-amplified cancer cells were isolated within 78 min, with minimal contamination as much as approximately 12 leukocytes per milliliter. As a model of molecular analysis toward personalized cancer treatment, we performed epidermal growth factor receptor (EGFR) mutation analysis with HCC827 lung cancer cells and the isolated cells were then successfully detected for the mutation by PCR clamping and direct sequencing.


Assuntos
Separação Celular/instrumentação , Dispositivos Lab-On-A-Chip , Células Neoplásicas Circulantes/patologia , Automação , Células Sanguíneas , Linhagem Celular Tumoral , Centrifugação com Gradiente de Concentração , Análise Mutacional de DNA , Receptores ErbB/genética , Humanos , Microfluídica , Reação em Cadeia da Polimerase , Medicina de Precisão
5.
Sci Rep ; 10(1): 20343, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230163

RESUMO

The use of precision medicine for chemotherapy requires the individualization of the therapeutic regimen for each patient. This approach improves treatment efficacy and reduces the probability of administering ineffective drugs. To ensure accurate decision-making in a timely manner, anticancer drug efficacy tests must be performed within a short timeframe using a small number of cancer cells. These requirements can be satisfied via microfluidics-based drug screening platforms, which are composed of complex fluidic channels and closed systems. Owing to their complexity, skilled manipulation is required. In this study, we developed a microfluidic platform, to accurately perform multiple drug efficacy tests using a small number of cells, which can be conducted via simple manipulation. As it is a small, open-chamber system, a minimal number of cells could be loaded through simple pipetting. Furthermore, the extracellular matrix gel inside the chamber provides an in vivo-like environment that enables the localized delivery of the drugs to spontaneously diffuse from the channels underneath the chamber without a pump, thereby efficiently and robustly testing the efficacy and resistance of multiple drugs. We demonstrated that this platform enabled the rapid and facile testing of multiple drugs using a small number of cells (~ 10,000) over a short period of time (~ 2 days). These results provide the possibility of using this powerful platform for selecting therapeutic medication, developing new drugs, and delivering personalized medicine to patients.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Microfluídica/métodos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células K562 , Células MCF-7 , Medicina de Precisão/métodos
6.
Lab Chip ; 18(5): 775-784, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29423464

RESUMO

Single-cell RNA-seq reveals the cellular heterogeneity inherent in the population of cells, which is very important in many clinical and research applications. Recent advances in droplet microfluidics have achieved the automatic isolation, lysis, and labeling of single cells in droplet compartments without complex instrumentation. However, barcoding errors occurring in the cell encapsulation process because of the multiple-beads-in-droplet and insufficient throughput because of the low concentration of beads for avoiding multiple-beads-in-a-droplet remain important challenges for precise and efficient expression profiling of single cells. In this study, we developed a new droplet-based microfluidic platform that significantly improved the throughput while reducing barcoding errors through deterministic encapsulation of inertially ordered beads. Highly concentrated beads containing oligonucleotide barcodes were spontaneously ordered in a spiral channel by an inertial effect, which were in turn encapsulated in droplets one-by-one, while cells were simultaneously encapsulated in the droplets. The deterministic encapsulation of beads resulted in a high fraction of single-bead-in-a-droplet and rare multiple-beads-in-a-droplet although the bead concentration increased to 1000 µl-1, which diminished barcoding errors and enabled accurate high-throughput barcoding. We successfully validated our device with single-cell RNA-seq. In addition, we found that multiple-beads-in-a-droplet, generated using a normal Drop-Seq device with a high concentration of beads, underestimated transcript numbers and overestimated cell numbers. This accurate high-throughput platform can expand the capability and practicality of Drop-Seq in single-cell analysis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microfluídica , Análise de Sequência de RNA , Análise de Célula Única , Animais , Células HEK293 , Humanos , Células K562 , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Propriedades de Superfície
7.
Biomaterials ; 75: 271-278, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26513419

RESUMO

Efficient isolation of circulating tumor cells (CTCs) from whole blood is a major challenge for the clinical application of CTCs. Here, we report an efficient method to isolate CTCs from whole blood using highly dense and transparent silica microbeads. The surfaces of silica microbeads were fully covered with an antibody to capture CTCs, and blocked by zwitterionic moieties to prevent the non-specific adsorption of blood cells. Owing to the high density of the silica microbeads, the complexation of CTCs with silica microbeads resulted in the efficient sedimentation of CTC-microbead complexes, which enabled their discrimination from other blood cells in density gradient media. Model CTCs (MCF-7, HCC827, and SHP-77) with various levels of epithelial cell adhesion molecule (EpCAM) were isolated efficiently, especially those with low EpCAM expression (SHP-77). Moreover, the transparency of silica microbeads enabled CTCs to be clearly identified without interference caused by microbeads. The improved sensitivity resulted in increased CTC recovery from patient samples compared with the FDA-approved CellSearch system (14/15 using our method; 5/15 using the CellSearch system). These results indicate that the isolation method described in this report constitutes a powerful tool for the isolation of CTCs from whole blood, which has important applications in clinical practice.


Assuntos
Separação Celular/métodos , Microesferas , Células Neoplásicas Circulantes/patologia , Fenômenos Ópticos , Dióxido de Silício/química , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Humanos , Fenômenos Magnéticos
8.
Sci Rep ; 6: 37392, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892470

RESUMO

Efficient isolation and genetic analysis of circulating tumor cells (CTCs) from cancer patients' blood is a critical step for clinical applications using CTCs. Here, we report a novel CTC-isolation method and subsequent genetic analysis. CTCs from the blood were complexed with magnetic beads coated with antibodies against the epithelial cell adhesion molecule (EpCAM) and separated vertically on a density-gradient medium in a modified well-plate. The recovery rate of model CTCs was reasonable and the cell purity was enhanced dramatically when compared to those parameters obtained using a conventional magnetic isolation method. CTCs were recovered from an increased number of patient samples using our magnetic system vs. the FDA-approved CellSearch system (100% vs. 33%, respectively). In 8 of 13 cases, targeted deep sequencing analysis of CTCs revealed private point mutations present in CTCs but not in matched tumor samples and white blood cells (WBCs), which was also validated by droplet digital PCR. Copy-number alterations in CTCs were also observed in the corresponding tumor tissues for some patients. In this report, we showed that CTCs isolated by the EpCAM-based method had complex and diverse genetic features that were similar to those of tumor samples in some, but not all, cases.


Assuntos
Antígenos de Neoplasias/genética , Molécula de Adesão da Célula Epitelial/genética , Separação Imunomagnética/métodos , Neoplasias Pulmonares/diagnóstico , Proteínas de Neoplasias/genética , Células Neoplásicas Circulantes/metabolismo , Alelos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Molécula de Adesão da Célula Epitelial/metabolismo , Expressão Gênica , Frequência do Gene , Humanos , Separação Imunomagnética/instrumentação , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Células Neoplásicas Circulantes/patologia , Mutação Puntual , Ligação Proteica
9.
Biomaterials ; 35(26): 7501-10, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24917030

RESUMO

Circulating tumor cells (CTCs) are rare cells and the presence of these cells may indicate a poor prognosis and a high potential for metastasis. Despite highly promising clinical applications, CTCs have not been investigated thoroughly, due to many technical limitations faced in their isolation and identification. Current CTC detection techniques mostly take the epithelial marker epithelial cell adhesion molecule (EpCAM), however, accumulating evidence suggests that CTCs show heterogeneous EpCAM expression due to the epithelial-to-mesenchymal transition (EMT). In this study, we report that a microchip filter device incorporating slit arrays and 3-dimensional flow that can separate heterogeneous population of cells with marker for CTCs. To select target we cultured breast cancer cells under prolonged mammosphere culture conditions which induced EMT phenotype. Under these conditions, cells show upregulation of caveolin1 (CAV1) but down-regulation of EpCAM expression. The proposed device which contains CAV1-EpCAM conjugated bead has several tens of times increased throughput. More importantly, this platform enables the enhanced capture yield from metastatic breast cancer patients and obtained cells that expressed various EMT markers. Further understanding of these EMT-related phenotypes will lead to improved detection techniques and may provide an opportunity to develop therapeutic strategies for effective treatment and prevention of cancer metastasis.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/sangue , Caveolina 1/metabolismo , Moléculas de Adesão Celular/metabolismo , Separação Celular/instrumentação , Proteínas Imobilizadas/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Transição Epitelial-Mesenquimal , Desenho de Equipamento , Feminino , Filtração/instrumentação , Humanos , Células Neoplásicas Circulantes/patologia
10.
Biomicrofluidics ; 7(1): 14105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24403997

RESUMO

Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer; as such, the ability to isolate and quantify CTCs is of great biomedical importance. This research presents a multi-stage multi-orifice flow fractionation (MS-MOFF) device formed by combining three single-stage multi-orifice segments designed for separating breast cancer cells from blood. The structure and dimensions of the MS-MOFF were determined by hydrodynamic principles to have consistent Reynolds numbers (Re) at each multi-orifice segment. From this device, we achieved improved separation efficiency by collecting and re-separating non-selected target cells in comparison with the single-stage multi-orifice flow fractionation (SS-MOFF). The recovery of breast cancer cells increased from 88.8% to greater than 98.9% through the multi-stage multi-orifice segments. This device can be utilized to isolate rare cells from human blood, such as CTCs, in a label-free manner solely through the use of hydrodynamic forces.

11.
Biosens Bioelectron ; 40(1): 63-7, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22784495

RESUMO

Circulating tumor cells (CTCs) are identified in transit within the blood stream of cancer patients and have been proven to be a main cause of metastatic disease. Current approaches for the size-based isolation of CTCs have encountered technical challenges as some of the CTCs have a size similar to that of leukocytes and therefore CTCs are often lost in the process. Here, we propose a novel strategy where most of the CTCs are coated by a large number of microbeads to amplify their size to enable complete discrimination from leukocytes. In addition, all of the microbead labeling processes are carried out in a continuous manner to prevent any loss of CTCs during the isolation process. Thus, a microfluidic mixer was employed to facilitate the efficient and selective labeling of CTCs from peripheral blood samples. By generating secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction in our microfluidic device, CTCs were continuously and successfully coated with anti-epithelial cell adhesion molecule-conjugated beads. After the continuous labeling, the enlarged CTCs were perfectly trapped in a micro-filter whereas all of the leukocytes escaped.


Assuntos
Neoplasias da Mama/patologia , Separação Celular/instrumentação , Rastreamento de Células/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Microesferas , Linhagem Celular Tumoral , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Miniaturização , Coloração e Rotulagem/instrumentação
12.
Lab Chip ; 12(16): 2874-80, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22684249

RESUMO

Circulating tumor cells (CTCs) have gained increasing attention as physicians and scientists learn more about the role these extraordinarily rare cells play in metastatic cancer. In developing CTC technology, the critical criteria are high recovery rates and high purity. Current isolation methods suffer from an inherent trade-off between these two goals. Moreover, ensuring minimal cell stress and robust reproducibility is also important for the clinical application of CTCs. In this paper, we introduce a novel CTC isolation technology using selective size amplification (SSA) for target cells and a multi-obstacle architecture (MOA) filter to overcome this trade-off, improving both recovery rate and purity. We also demonstrate SSA-MOA's advantages in minimizing cell deformation during filter transit, resulting in more stable and robust CTC isolation. In this technique, polymer microbeads conjugated with anti-epithelial cell adhesion molecules (anti-EpCAM) were used to selectively size-amplify MCF-7 breast cancer cells, definitively differentiating from the white blood cells (WBCs) by avoiding the size overlap that compromises other size selection methods. 3 µm was determined to be the optimal microbead diameter, not only for size discrimination but also in maximizing CTC surface coverage. A multi-obstacle architecture filter was fabricated using silicon-on-glass (SOG) technology-a first such application of this fabrication technique-to create a precise microfilter structure with a high aspect ratio. The filter was designed to minimize cell deformation as simulation results predicted that cells captured via this MOA filter would experience 22% less moving force than with a single-obstacle architecture. This was verified by experiments, as we observed reliable cell capture and reduced cell deformation, with a 92% average recovery rate and 351 peripheral blood leukocytes (PBL) per millilitre (average). We expect the SSA-MOA platform to optimize CTC recovery rates, purity, and stability, increasing the sensitivity and reliability of such tests, thereby potentially expanding the utilization of CTC technologies in the clinic.


Assuntos
Separação Celular/instrumentação , Separação Celular/métodos , Filtração/métodos , Células Neoplásicas Circulantes , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Vidro/química , Humanos , Leucócitos/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microesferas , Polímeros/química , Silício/química
13.
Lab Chip ; 11(6): 1118-25, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21298159

RESUMO

Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications.


Assuntos
Neoplasias da Mama/sangue , Separação Celular/métodos , Eletroforese/métodos , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Separação Celular/instrumentação , Feminino , Humanos , Hidrodinâmica , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
14.
Environ Sci Technol ; 43(15): 5857-63, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19731688

RESUMO

Airborne microbes such as fungi, bacteria, and viruses are a threat to public health. Robust and real-time detection systems are necessary to prevent and control such dangerous biological particles in public places and dwellings. For direct and real-time detection of airborne microbes, samples must be collected and typically resuspended in liquid prior to detection; however, environmental particles such as dust are also trapped in such samples. Therefore, the isolation of target bacteria or a selective collection of microbes from unwanted nonbiological particles prior to detection is of great importance. Dielectrophoresis (DEP), the translational motion of charge neutral matter in nonuniform electric fields, is an emerging technique that can rapidly separate biological particles in microfluidics because low voltages produce significant and contactless forces on particles without any modification or labeling. In this paper, we propose a new method for the separation of airborne microbes using DEP with a simple and novel curved electrode design for separating bacteria in a solution containing beads or dust that are taken from an airborne environmental sample. Using this method, we successfully isolated 90% of the airborne bacterium Micrococcus luteus from a mixture of bacteria and dust using a microfluidic device, consisting of novel curved electrodes that attract bacteria and repel or leave dust particles. As there has been little research on analyzing environmental samples using microfluidics and DEP, this work describes a novel strategy for a rapid and direct bioaerosol monitoring system.


Assuntos
Eletroforese em Microchip/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Microfluídica/métodos , Aerossóis , Bactérias/metabolismo , Poeira , Eletrodos , Eletroforese/métodos , Eletroforese em Microchip/métodos , Monitoramento Ambiental/métodos , Desenho de Equipamento , Micrococcus/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Modelos Teóricos , Espectrofotometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA