Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2305227120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983514

RESUMO

Disease surveillance systems provide early warnings of disease outbreaks before they become public health emergencies. However, pandemics containment would be challenging due to the complex immunity landscape created by multiple variants. Genomic surveillance is critical for detecting novel variants with diverse characteristics and importation/emergence times. Yet, a systematic study incorporating genomic monitoring, situation assessment, and intervention strategies is lacking in the literature. We formulate an integrated computational modeling framework to study a realistic course of action based on sequencing, analysis, and response. We study the effects of the second variant's importation time, its infectiousness advantage and, its cross-infection on the novel variant's detection time, and the resulting intervention scenarios to contain epidemics driven by two-variants dynamics. Our results illustrate the limitation in the intervention's effectiveness due to the variants' competing dynamics and provide the following insights: i) There is a set of importation times that yields the worst detection time for the second variant, which depends on the first variant's basic reproductive number; ii) When the second variant is imported relatively early with respect to the first variant, the cross-infection level does not impact the detection time of the second variant. We found that depending on the target metric, the best outcomes are attained under different interventions' regimes. Our results emphasize the importance of sustained enforcement of Non-Pharmaceutical Interventions on preventing epidemic resurgence due to importation/emergence of novel variants. We also discuss how our methods can be used to study when a novel variant emerges within a population.


Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , Saúde Pública , Surtos de Doenças/prevenção & controle , Genômica
2.
PLoS Comput Biol ; 15(3): e1006875, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30865618

RESUMO

West Nile virus (WNV)-a mosquito-borne arbovirus-entered the USA through New York City in 1999 and spread to the contiguous USA within three years while transitioning from epidemic outbreaks to endemic transmission. The virus is transmitted by vector competent mosquitoes and maintained in the avian populations. WNV spatial distribution is mainly determined by the movement of residential and migratory avian populations. We developed an individual-level heterogeneous network framework across the USA with the goal of understanding the long-range spatial distribution of WNV. To this end, we proposed three distance dispersal kernels model: 1) exponential-short-range dispersal, 2) power-law-long-range dispersal in all directions, and 3) power-law biased by flyway direction -long-range dispersal only along established migratory routes. To select the appropriate dispersal kernel we used the human case data and adopted a model selection framework based on approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC). From estimated parameters, we find that the power-law biased by flyway direction kernel is the best kernel to fit WNV human case data, supporting the hypothesis of long-range WNV transmission is mainly along the migratory bird flyways. Through extensive simulation from 2014 to 2016, we proposed and tested hypothetical mitigation strategies and found that mosquito population reduction in the infected states and neighboring states is potentially cost-effective.


Assuntos
Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Aves/virologia , Culicidae/virologia , Humanos , Modelos Teóricos , Método de Monte Carlo , Mosquitos Vetores , Estados Unidos/epidemiologia , Febre do Nilo Ocidental/embriologia , Febre do Nilo Ocidental/virologia , Zoonoses/epidemiologia
3.
R Soc Open Sci ; 10(8): 230873, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37593709

RESUMO

This research develops a novel system science approach to examine the potential risk of outbreaks caused by geographical clustering of underimmunized individuals for an infectious disease like measles. We use an activity-based population network model and school immunization records to identify underimmunized clusters of zip codes in the Commonwealth of Virginia. Although Virginia has high vaccine coverage for measles at the state level, finer-scale investigation at the zip code level finds three statistically significant underimmunized clusters. This research examines why some underimmunized geographical clusters are more critical in causing outbreaks and how their criticality changes with a possible drop in overall vaccination coverage. Results show that different clusters can cause vastly different outbreaks in a region, depending on their size, location, immunization rate and network characteristics. Among the three underimmunized clusters, we find one to be critical and the other two to be benign in terms of an outbreak risk. However, when the vaccine coverage among children drops by just 5% (or 0.8% overall in the population), one of the benign clusters becomes highly critical. This work also examines the demographic and network properties of these clusters to identify factors that are responsible for affecting the criticality of the clusters. Although this work focuses on measles, the methodology is generic and can be applied to study other infectious diseases.

4.
medRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131740

RESUMO

Disruptions in routine immunizations due to the COVID-19 pandemic have been a cause of significant concern for health organizations worldwide. This research develops a system science approach to examine the potential risk of geographical clustering of underimmunized individuals for an infectious disease like measles. We use an activity-based population network model and school immunization records to identify underimmunized clusters of zip codes in the Commonwealth of Virginia. Although Virginia has high vaccine coverage at the state level for measles, finer-scale investigation at the zip code level finds three statistically significant underimmunized clusters. To estimate the criticality of these clusters, a stochastic agent-based network epidemic model is used. Results show that different clusters can cause vastly different outbreaks in the region, depending on their size, location, and network characteristics. This research aims to understand why some underimmunized geographical clusters do not cause a large outbreak while others do. A detailed network analysis shows that it is not the average degree of the cluster or the percentage of underimmunized individuals in the cluster but the average eigenvector centrality of the cluster that is important in determining its potential risk.

5.
Sci Rep ; 11(1): 4891, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649364

RESUMO

Contact tracing can play a key role in controlling human-to-human transmission of a highly contagious disease such as COVID-19. We investigate the benefits and costs of contact tracing in the COVID-19 transmission. We estimate two unknown epidemic model parameters (basic reproductive number [Formula: see text] and confirmed rate [Formula: see text]) by using confirmed case data. We model contact tracing in a two-layer network model. The two-layer network is composed by the contact network in the first layer and the tracing network in the second layer. In terms of benefits, simulation results show that increasing the fraction of traced contacts decreases the size of the epidemic. For example, tracing [Formula: see text] of the contacts is enough for any reopening scenario to reduce the number of confirmed cases by half. Considering the act of quarantining susceptible households as the contact tracing cost, we have observed an interesting phenomenon. The number of quarantined susceptible people increases with the increase of tracing because each individual confirmed case is mentioning more contacts. However, after reaching a maximum point, the number of quarantined susceptible people starts to decrease with the increase of tracing because the increment of the mentioned contacts is balanced by a reduced number of confirmed cases. The goal of this research is to assess the effectiveness of contact tracing for the containment of COVID-19 spreading in the different movement levels of a rural college town in the USA. Our research model is designed to be flexible and therefore, can be used to other geographic locations.


Assuntos
COVID-19 , Simulação por Computador , Busca de Comunicante , Modelos Biológicos , População Rural , SARS-CoV-2 , Adolescente , Adulto , COVID-19/epidemiologia , COVID-19/transmissão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia
6.
PLoS One ; 14(12): e0225785, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805117

RESUMO

Animal movement networks are essential in understanding and containing the spread of infectious diseases in farming industries. Due to its confidential nature, movement data for the US swine farming population is not readily available. Hence, we propose a method to generate such networks from limited data available in the public domain. As a potentially devastating candidate, we simulate the spread of African swine fever virus (ASFV) in our generated network and analyze how the network structure affects the disease spread. We find that high in-degree farm operations (i.e., markets) play critical roles in the disease spread. We also find that high in-degree based targeted isolation and hypothetical vaccinations are more effective for disease control compared to other centrality-based mitigation strategies. The generated networks can be made more robust by validation with more data whenever more movement data will be available.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Meios de Transporte , Animais , Surtos de Doenças/veterinária , Fazendas , Minnesota , Suínos , Fatores de Tempo , Vacinação
7.
Sci Rep ; 9(1): 6237, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996237

RESUMO

Swine movement networks among farms/operations are an important source of information to understand and prevent the spread of diseases, nearly nonexistent in the United States. An understanding of the movement networks can help the policymakers in planning effective disease control measures. The objectives of this work are: (1) estimate swine movement probabilities at the county level from comprehensive anonymous inventory and sales data published by the United States Department of Agriculture - National Agriculture Statistics Service database, (2) develop a network based on those estimated probabilities, and (3) analyze that network using network science metrics. First, we use a probabilistic approach based on the maximum information entropy method to estimate the movement probabilities among different swine populations. Then, we create a swine movement network using the estimated probabilities for the counties of the central agricultural district of Iowa. The analysis of this network has found evidence of the small-world phenomenon. Our study suggests that the US swine industry may be vulnerable to infectious disease outbreaks because of the small-world structure of its movement network. Our system is easily adaptable to estimate movement networks for other sets of data, farm animal production systems, and geographic regions.


Assuntos
Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Fazendas , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Suínos , Meios de Transporte , Algoritmos , Animais , Bases de Dados Factuais , Iowa/epidemiologia , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA