Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 153: 14-25, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33326834

RESUMO

ß-adrenergic receptor antagonists (ß-blockers) are extensively used to improve cardiac performance in heart failure (HF), but the electrical improvements with these clinical treatments are not fully understood. The aim of this study was to analyze the electrophysiological effects of ß-adrenergic system remodeling in heart failure with reduced ejection fraction and the underlying mechanisms. We used a combined mathematical model that integrated ß-adrenergic signaling with electrophysiology and calcium cycling in human ventricular myocytes. HF remodeling, both in the electrophysiological and signaling systems, was introduced to quantitatively analyze changes in electrophysiological properties due to the stimulation of ß-adrenergic receptors in failing myocytes. We found that the inotropic effect of ß-adrenergic stimulation was reduced in HF due to the altered Ca2+ dynamics resulting from the combination of structural, electrophysiological and signaling remodeling. Isolated cells showed proarrhythmic risk after sympathetic stimulation because early afterdepolarizations appeared, and the vulnerability was greater in failing myocytes. When analyzing coupled cells, ß-adrenergic stimulation reduced transmural repolarization gradients between endocardium and epicardium in normal tissue, but was less effective at reducing these gradients after HF remodeling. The comparison of the selective activation of ß-adrenergic isoforms revealed that the response to ß2-adrenergic receptors stimulation was blunted in HF while ß1-adrenergic receptors downstream effectors regulated most of the changes observed after sympathetic stimulation. In conclusion, this study was able to reproduce an altered ß-adrenergic activity on failing myocytes and to explain the mechanisms involved. The derived predictions could help in the treatment of HF and guide in the design of future experiments.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Simulação por Computador , Insuficiência Cardíaca/fisiopatologia , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Remodelação Ventricular , Potenciais de Ação , Cálcio/metabolismo , Humanos , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 2/química
2.
PLoS One ; 14(6): e0217993, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31211790

RESUMO

BACKGROUND: Heart failure (HF) is characterized, among other factors, by a progressive loss of contractile function and by the formation of an arrhythmogenic substrate, both aspects partially related to intracellular Ca2+ cycling disorders. In failing hearts both electrophysiological and structural remodeling, including fibroblast proliferation, contribute to changes in Ca2+ handling which promote the appearance of Ca2+ alternans (Ca-alt). Ca-alt in turn give rise to repolarization alternans, which promote dispersion of repolarization and contribute to reentrant activity. The computational analysis of the incidence of Ca2+ and/or repolarization alternans under HF conditions in the presence of fibroblasts could provide a better understanding of the mechanisms leading to HF arrhythmias and contractile function disorders. METHODS AND FINDINGS: The goal of the present study was to investigate in silico the mechanisms leading to the formation of Ca-alt in failing human ventricular myocytes and tissues with disperse fibroblast distributions. The contribution of ionic currents variability to alternans formation at the cellular level was analyzed and the results show that in normal ventricular tissue, altered Ca2+ dynamics lead to Ca-alt, which precede APD alternans and can be aggravated by the presence of fibroblasts. Electrophysiological remodeling of failing tissue alone is sufficient to develop alternans. The incidence of alternans is reduced when fibroblasts are present in failing tissue due to significantly depressed Ca2+ transients. The analysis of the underlying ionic mechanisms suggests that Ca-alt are driven by Ca2+-handling protein and Ca2+ cycling dysfunctions in the junctional sarcoplasmic reticulum and that their contribution to alternans occurrence depends on the cardiac remodeling conditions and on myocyte-fibroblast interactions. CONCLUSION: It can thus be concluded that fibroblasts modulate the formation of Ca-alt in human ventricular tissue subjected to heart failure-related electrophysiological remodeling. Pharmacological therapies should thus consider the extent of both the electrophysiological and structural remodeling present in the failing heart.


Assuntos
Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Sinalização do Cálcio/genética , Proliferação de Células/genética , Fenômenos Eletrofisiológicos , Fibroblastos/metabolismo , Fibroblastos/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/patologia , Humanos , Modelos Cardiovasculares , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia
3.
Front Physiol ; 9: 1194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190684

RESUMO

Heart failure (HF) is characterized by altered Ca2+ cycling, resulting in cardiac contractile dysfunction. Failing myocytes undergo electrophysiological remodeling, which is known to be the main cause of abnormal Ca2+ homeostasis. However, structural remodeling, specifically proliferating fibroblasts coupled to myocytes in the failing heart, could also contribute to Ca2+ cycling impairment. The goal of the present study was to systematically analyze the mechanisms by which myocyte-fibroblast coupling could affect Ca2+ dynamics in normal conditions and in HF. Simulations of healthy and failing human myocytes were performed using established mathematical models, and cells were either isolated or coupled to fibroblasts. Univariate and multivariate sensitivity analyses were performed to quantify effects of ion transport pathways on biomarkers computed from intracellular [Ca2+] waveforms. Variability in ion channels and pumps was imposed and populations of models were analyzed to determine effects on Ca2+ dynamics. Our results suggest that both univariate and multivariate sensitivity analyses are valuable methodologies to shed light into the ionic mechanisms underlying Ca2+ impairment in HF, although differences between the two methodologies are observed at high parameter variability. These can result from either the fact that multivariate analyses take into account ion channels or non-linear effects of ion transport pathways on Ca2+ dynamics. Coupling either healthy or failing myocytes to fibroblasts decreased Ca2+ transients due to an indirect sink effect on action potential (AP) and thus on Ca2+ related currents. Simulations that investigated restoration of normal physiology in failing myocytes showed that Ca2+ cycling can be normalized by increasing SERCA and L-type Ca2+ current activity while decreasing Na+-Ca2+ exchange and SR Ca2+ leak. Changes required to normalize APs in failing myocytes depended on whether myocytes were coupled to fibroblasts. In conclusion, univariate and multivariate sensitivity analyses are helpful tools to understand how Ca2+ cycling is impaired in HF and how this can be exacerbated by coupling of myocytes to fibroblasts. The design of pharmacological actions to restore normal activity should take into account the degree of fibrosis in the failing heart.

4.
PLoS One ; 12(11): e0187739, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117223

RESUMO

Abnormal intracellular Ca2+ handling is the major contributor to the depressed cardiac contractility observed in heart failure. The electrophysiological remodeling associated with this pathology alters both the action potential and the Ca2+ dynamics, leading to a defective excitation-contraction coupling that ends in mechanical dysfunction. The importance of maintaining a correct intracellular Ca2+ concentration requires a better understanding of its regulation by ionic mechanisms. To study the electrical activity and ionic homeostasis of failing myocytes, a modified version of the O'Hara et al. human action potential model was used, including electrophysiological remodeling. The impact of the main ionic transport mechanisms was analyzed using single-parameter sensitivity analyses, the first of which explored the modulation of electrophysiological characteristics related to Ca2+ exerted by the remodeled parameters. The second sensitivity analysis compared the potential consequences of modulating individual channel conductivities, as one of the main effects of potential drugs, on Ca2+ dynamic properties under both normal conditions and in heart failure. The first analysis revealed the important contribution of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) dysfunction to the altered Ca2+ homeostasis, with the Na+/Ca2+ exchanger (NCX) and other Ca2+ cycling proteins also playing a significant role. Our results highlight the importance of improving the SR uptake function to increase Ca2+ content and restore Ca2+ homeostasis and contractility. The second sensitivity analysis highlights the different response of the failing myocyte versus the healthy myocyte to potential pharmacological actions on single channels. The result of modifying the conductances of the remodeled proteins such as SERCA and NCX in heart failure has less impact on Ca2+ modulation. These differences should be taken into account when designing drug therapies.


Assuntos
Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Potenciais de Ação/fisiologia , Estimulação Elétrica , Acoplamento Excitação-Contração/fisiologia , Expressão Gênica , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Transporte de Íons , Cinética , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Trocador de Sódio e Cálcio/genética
5.
World J Gastroenterol ; 21(3): 1001-8, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25624737

RESUMO

Lysosomal acid lipase (LAL) deficiency is an under-recognized lysosomal disease caused by deficient enzymatic activity of LAL. In this report we describe two affected female Mexican siblings with early hepatic complications. At two months of age, the first sibling presented with alternating episodes of diarrhea and constipation, and later with hepatomegaly, elevated transaminases, high levels of total and low-density lipoprotein cholesterol, and low levels of high-density lipoprotein. Portal hypertension and grade 2 esophageal varices were detected at four years of age. The second sibling presented with hepatomegaly, elevated transaminases and mildly elevated low-density lipoprotein and low high-density lipoprotein at six months of age. LAL activity was deficient in both patients. Sequencing of LIPA revealed two previously unreported heterozygous mutations in exon 4: c.253C>A and c.294C>G. These cases highlight the clinical continuum between the so-called Wolman disease and cholesteryl ester storage disease, and underscore that LAL deficiency represents a single disease with a degree of clinical heterogeneity.


Assuntos
Mutação , Irmãos , Esterol Esterase/deficiência , Esterol Esterase/genética , Doença de Wolman/genética , Biópsia , Criança , Pré-Escolar , Análise Mutacional de DNA , Progressão da Doença , Varizes Esofágicas e Gástricas/enzimologia , Varizes Esofágicas e Gástricas/genética , Esofagoscopia , Éxons , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Feminino , Predisposição Genética para Doença , Hepatomegalia/enzimologia , Hepatomegalia/genética , Heterozigoto , Humanos , Hipertensão Portal/enzimologia , Hipertensão Portal/genética , Imuno-Histoquímica , Lactente , Cirrose Hepática/enzimologia , Cirrose Hepática/genética , México , Linhagem , Fenótipo , Irmãos/etnologia , Fatores de Tempo , Ultrassonografia Doppler em Cores , Doença de Wolman/complicações , Doença de Wolman/diagnóstico , Doença de Wolman/enzimologia , Doença de Wolman/etnologia , Doença de Wolman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA