RESUMO
Hyalomma anatolicum is a tick of significant one-health importance due to its role as a vector for various pathogens affecting humans, animals and the environment, such as Theileria annulata, which causes tropical theileriosis in cattle, leading to severe economic losses. When infected with pathogens like T. annulata, the salivary glands of H. anatolicum undergo gene expression changes, secrete modified proteins and activate immune responses, all of which facilitate pathogen survival and transmission by modulating the host immune response and optimizing conditions for pathogen development. Understanding these responses is crucial for developing control strategies for tick-borne diseases. To understand the interaction between H. anatolicum and T. annulata, we performed a differential gene expression analysis of H. anatolicum salivary glands. An average of approximately 25 million raw sequencing reads were generated in each replicate using Illumina Sequencing. The sequenced reads were de novo assembled and the assembled transcriptome yielded approximately 50,231 non-redundant transcripts after clustering with CD-HIT using a sequence identity of 95% and alignment coverage of 90%. The assembly quality was evaluated with BUSCO analysis and found to be 86% complete using the Arachnida dataset and then blasted against non-redundant protein sequence database from NCBI followed by counting of reads and differential expression analysis. Overall, around 2400 and 400 genes were found differentially expressed with logFC > 1 and logFC > 2 respectively at FDR < 0.05. Top up-regulated genes included Calpain, Papilin, Neprilysin, and Ankyrin repeat-containing protein. Top down-regulated genes included Scoloptoxin, and Selenoprotein S and other uncharacterized proteins. Many other up-regulated proteins with high significance were uncharacterized suggesting room for further H. anatolicum functional and structural characterization studies. To our best knowledge, this is the first study of H. anatolicum sialotranscriptome which greatly contributes to sialotranscriptome information not only as sequence database but also indicates the potential targets for development of vaccine against ticks and transmission-blocking vaccines against T. annulata.
RESUMO
Data on SARS-CoV-2 infection in wildlife species is limited. The high prevalences found in mustelid species such as free-ranging American minks (Neovison vison) and domestic ferrets (Mustela putorius furo) justify the study of this virus in the closely related autochthonous free-ranging European polecat (Mustela putorius). We analysed lung samples from 48 roadkilled polecats collected when the human infection reached its highest levels in Spain (2020-2021). We did not detect infections by SARS-CoV-2; however, surveillance in wild carnivores and particularly in mustelids is still warranted, due to their susceptibility to this virus.
RESUMO
Studies about the identification of SARS-CoV-2 in indoor aerosols have been conducted in hospital patient rooms and to a lesser extent in nonhealthcare environments. In these studies, people were already infected with SARS-CoV-2. However, in the present study, we investigated the presence of SARS-CoV-2 in HEPA filters housed in portable air cleaners (PACs) located in places with apparently healthy people to prevent possible outbreaks. A method for detecting the presence of SARS-CoV-2 RNA in HEPA filters was developed and validated. The study was conducted for 13 weeks in three indoor environments: school, nursery, and a household of a social health center, all in Ciudad Real, Spain. The environmental monitoring of the presence of SARS-CoV-2 was conducted in HEPA filters and other surfaces of these indoor spaces for a selective screening in asymptomatic population groups. The objective was to limit outbreaks at an early stage. One HEPA filter tested positive in the social health center. After analysis by RT-PCR of SARS-CoV-2 in residents and healthcare workers, one worker tested positive. Therefore, this study provides direct evidence of virus-containing aerosols trapped in HEPA filters and the possibility of using these PACs for environmental monitoring of SARS-CoV-2 while they remove airborne aerosols and trap the virus.
Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados , COVID-19 , Poluição do Ar em Ambientes Fechados/prevenção & controle , Humanos , RNA Viral , Aerossóis e Gotículas Respiratórios , SARS-CoV-2RESUMO
Spotted fever group (SFG) Rickettsia are zoonotic and emerging pathogens with considerable impact in public and animal health. Greece is an endemic country of diseases caused by SFG Rickettsia. This work aims to evaluate the prevalence of SFG Rickettsia in ticks collected from domestic hosts including sheep, goats and dogs. Several genetic markers for bacterial genes, such as 16S rRNA, ompA, ompB, atpA, gltA, recA, dnaA and dnaK, were amplified and sequenced to accurately classified the rickettsial pathogens in the ticks. Taxonomy and species classification of the Rickettsia was achieved by combining phylogenetic and in silico digestion analysis of the gene sequences obtained. A total of 187 ticks were collected and classified at the species level as Ixodes gibosus, Dermacentor marginatus, Haemaphysalis parva, H. sulcata, H. punctata, Hyalomma scavatum, Rhipicephalus sanguineus, R. bursa and Rhipicephalus sp. The results showed that 7.5% of ticks were infected with at least one SFG Rickettsia including R. massiliae (n = 3), R. slovaca (n = 5), R. raoultii (n = 1) and R. hoogstraalii (n = 5), collected from sheep (n = 4), goats (n = 5) and dogs (n = 3). Molecular analysis revealed the presence of novel genetic variants of R. hoogstraalii (in H. sulcata and H. parva from goat and sheep) and R. raoultii (in D. marginatus from goat). These results proof the presence of SFG Rickettsia in domestic hosts in Greece, and support the need for continued monitoring, surveillance and further analyses of other hosts and study areas.
Assuntos
Ixodidae/microbiologia , Rickettsia/isolamento & purificação , Animais , Cães/parasitologia , Feminino , Cabras/parasitologia , Grécia , Ixodidae/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/microbiologia , Masculino , Filogenia , Rickettsia/classificação , Ovinos/parasitologiaRESUMO
There are currently no vaccines available to prevent and control of Anaplasma phagocytophilum, an intracellular bacterial pathogen transmitted by ticks that occurs in many regions of the world and causes disease in a wide range of domestic and wild hosts, including humans. Vaccines induce long-lasting immunity and could prevent or reduce transmission of this pathogen. Understanding how vaccines induce a protective response can be difficult due to the complexity of the immune system, which operates at many levels throughout the organism. New perspectives in vaccinology, based on systems biology approaches, integrate many scientific disciplines to fully understand the biological responses to vaccination, where a transcriptomic approach could reveal relevant information of the host immune system, allowing profiling for rational design of vaccine formulations, administration, and potential protection. In the present study we report the gene expression profiles by RNA-seq followed by functional analysis using whole blood samples from rabbits immunized with a recombinant chimeric protein containing peptides from the MSP4 protein of A. phagocytophilum, which showed satisfactory results in terms of potential protection. Transcriptomic analysis revealed differential expression of 720 genes, with 346 genes upregulated and 374 genes downregulated. Overrepresentation of biological and metabolic pathways correlated with immune response, protein signaling, cytoskeleton organization and protein synthesis were found. These changes in gene expression could provide a complete and unique picture of the biological response to the epitope candidate vaccine against A. phagocytophilum in the host.
Assuntos
Anaplasma phagocytophilum , Vacinas Bacterianas , Animais , Coelhos , Anaplasma phagocytophilum/imunologia , Vacinas Bacterianas/imunologia , Vacinação , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Ehrlichiose/prevenção & controle , Ehrlichiose/imunologia , Ehrlichiose/veterinária , Transcriptoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Expressão Gênica , FemininoRESUMO
Crimean-Congo haemorrhagic fever (CCHF) unexpectedly emerged in humans in Northwest Spain in 2021, and two additional cases were reported in the region in 2022. The 2021 case was associated with a tick bite on the outskirts of the city where the patient lived. PCR analysis of 95 questing ticks collected in the outskirts of that city in 2021, none of the genus Hyalomma, revealed a prevalence of confirmed CCHF virus (CCHFV) infection of 10.5%. Our results in this emerging scenario suggest the need to consider that CCHFV may be effectively spreading to Northwest Spain and to urgently understand any possible role of non-Hyalomma spp. ticks in the eco-epidemiological dynamics of CCHFV.
Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Carrapatos , Animais , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/transmissão , Febre Hemorrágica da Crimeia/virologia , Espanha/epidemiologia , Carrapatos/virologiaRESUMO
To improve the knowledge on the role of bats in the maintenance and transmission of tick-borne pathogens, a molecular approach was used to characterize Anaplasma spp., Rickettsia spp., Coxiella burnetii, Borrelia burgdorferi s.l., piroplasmids, Hepatozoon spp., flaviviruses and nairoviruses in ticks collected from Iberian bats. A total of 732 bats from 25 species were captured at 38 sampling sites distributed in seven provinces of Spain between 2018 and 2022. Seventy-nine Ixodes simplex ticks were collected from 31 bats (Eptesicus isabellinus, Hypsugo savii, Myotis capaccini, Myotis emarginatus, Myotis myotis, Miniopterus schreibersii, Pipistrellus pipistrellus and Rhinolophus ferrumequinum). Sixty of 79 I. simplex were positive for at least one pathogen tested and were collected from 23 bats captured in southeast Spain. We detected the presence of Rickettsia slovaca in 12 ticks collected from M. emarginatus, H. savii, M. schreibersii and E. isabellinus; Rickettsia aeschlimannii in 1 tick from M. schreibersii; Anaplasma ovis in 3 ticks from H. savii and M. schreibersii; C. burnetii in 2 ticks from H. savii; Occidentia massiliensis in 1 tick from H. savii; piroplasmids in 12 ticks from H. savii, M. schreibersii and E. isabellinus; and a novel nairovirus in 1 tick from M. schreibersii. Furthermore, blood samples obtained from 14 of the 31 tick-infested bats were negative in all PCR analyses. This study describes new host and pathogen associations for the bat-specialist I. simplex, highlights the risk of spread of these pathogens, and encourages further research to understand the role of Iberian bats in the epidemiology of tick-borne pathogens.
Assuntos
Quirópteros , Ixodes , Animais , Quirópteros/microbiologia , Quirópteros/virologia , Ixodes/microbiologia , Ixodes/virologia , Espanha/epidemiologia , Rickettsia/isolamento & purificação , Rickettsia/genética , Anaplasma/isolamento & purificação , Anaplasma/genética , Borrelia burgdorferi/isolamento & purificação , Infestações por Carrapato/veterinária , Infestações por Carrapato/epidemiologia , Coxiella burnetii/isolamento & purificação , Coxiella burnetii/genéticaRESUMO
Coxiella burnetii is a multi-host bacterium of major public and animal health concern. This pathogen circulates among several wild species in the Iberian Peninsula, however, the role of the Iberian lynx (Lynx pardinus) in the epidemiology of this emerging pathogen is still unknown. The objective of this work was to assess the circulation of C. burnetii in Iberian lynx populations from the Iberian Peninsula and to study the molecular characterisation of this pathogen in lynxes and their feeding ticks. A total of 922 lynxes, including free-ranging and captive individuals, were sampled between 2010 and 2022 for the collection of sera (n = 543), spleen samples (n = 390) and ticks (n = 357 from 61 lynxes). The overall seroprevalence was 7.7â¯% (42/543; 95â¯%CI: 5.5-10.0â¯%), with age being significantly associated with the C. burnetii exposure in free-ranging lynxes. A longitudinal study was also carried out to assess the dynamics of the circulation of C. burnetii in this wild host, revealing that 7 of the 37 longitudinally surveyed individuals seroconverted during the study period. The PCR prevalence was 4.4â¯% (17/390, 95â¯%CI: 2.3-6.4â¯%) for spleen samples and 1.1â¯% (4/357; 95â¯% CI: 0.0-2.2) in ticks. This is the first study to evaluate the circulation of C. burnetii in the Iberian lynx and to confirm the infection in this felid. The results obtained show a moderate, wide, homogeneous, and endemic circulation of this bacterium in the Iberian lynx populations.
Assuntos
Coxiella burnetii , Lynx , Febre Q , Animais , Lynx/microbiologia , Coxiella burnetii/isolamento & purificação , Febre Q/veterinária , Febre Q/epidemiologia , Febre Q/microbiologia , Espanha/epidemiologia , Feminino , Masculino , Estudos Soroepidemiológicos , Prevalência , Estudos LongitudinaisRESUMO
Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease associated with its principal tick vector, Hyalomma spp. with increasing fatal incidence worldwide. Accordingly, CCHF is a World Health Organization-prioritized disease with the absence of effective preventive interventions and approved vaccines or effective treatments. This perspective raised from a multidisciplinary gap analysis considering a One Health approach beneficial for human and animal health and the environment exploring international collaborations, gaps and recommendations.
RESUMO
Anaplasma species are obligate intracellular rickettsial pathogens that cause significant diseases in animals and humans. Despite their importance, limited information on Anaplasma infections in Algeria has been published thus far. This study aimed to assess the infection rate, characterize Anaplasma species, and identify associated risk factors in selected sheep farms across Oum El Bouaghi region in Algeria. In 2018, we collected 417 blood samples from sheep (Ovis aries) and performed molecular characterization of Anaplasma species infecting these animals. This characterization involved the use of 16S rRNA, msp2, rpoB, and msp5 genes, which were analyzed through nested PCR, qPCR, cPCR, DNA sequencing, and subsequent phylogenetic analysis. Our findings revealed infection rates of 12.7 % for Anaplasma species detected, with Anaplasma ovis at 10.8 %, Anaplasma marginale at 1.7 %, and Anaplasma platys at 0.2 %. Interestingly, all tested animals were found negative for Anaplasma phagocytophilum. Statistical analyses, including the Chi-square test and Fisher exact test, failed to establish any significant relationships (p > 0.05) between A. ovis and A. platys infections and variables such as age, sex, sampling season, and tick infestation level. However, A. marginale infection exhibited a significant association with age (p < 0.05), with a higher incidence observed in lambs (5.2 %) compared to other age groups. Remarkably, this study represents the first molecular detection of A. platys and A. marginale in Algerian sheep. These findings suggest that Algerian sheep may serve as potential reservoirs for these pathogens. This research contributes valuable insights into the prevalence and characteristics of Anaplasma infections in Algerian sheep populations, emphasizing the need for further investigation and enhanced surveillance to better understand and manage these diseases.
Assuntos
Anaplasma marginale , Anaplasmose , Humanos , Animais , Ovinos , Anaplasma marginale/genética , Anaplasmose/epidemiologia , RNA Ribossômico 16S/genética , Argélia/epidemiologia , FilogeniaRESUMO
Ticks are the main vectors for the transmission of bacterial, protist and viral pathogens in Europe affecting wildlife and domestic animals. However, some of them are zoonotic and can cause serious, sometimes fatal, problems in human health. A systematic review in PubMed/MEDLINE database was conducted to determine the spatial distribution and host and tick species ranges of a selection of tick-borne bacteria (Anaplasma spp., Borrelia spp., Coxiella spp., and Rickettsia spp.), protists (Babesia spp. and Theileria spp.), and viruses (Orthonairovirus, and flaviviruses tick-borne encephalitis virus and louping ill virus) on the European continent in a five-year period (November 2017 - November 2022). Only studies using PCR methods were selected, retrieving a total of 429 articles. Overall, up to 85 species of the selected tick-borne pathogens were reported from 36 European countries, and Anaplasma spp. was described in 37% (159/429) of the articles, followed by Babesia spp. (34%, 148/429), Borrelia spp. (34%, 147/429), Rickettsia spp. (33%, 142/429), Theileria spp. (11%, 47/429), tick-borne flaviviruses (9%, 37/429), Orthonairovirus (7%, 28/429) and Coxiella spp. (5%, 20/429). Host and tick ranges included 97 and 50 species, respectively. The highest tick-borne pathogen diversity was detected in domestic animals, and 12 species were shared between humans, wildlife, and domestic hosts, highlighting the following zoonotic species: Anaplasma phagocytophilum, Babesia divergens, Babesia microti, Borrelia afzelii, Borrelia burgdorferi s.s., Borrelia garinii, Borrelia miyamotoi, Crimean-Congo hemorrhagic fever virus, Coxiella burnetii, Rickettsia monacensis and tick-borne encephalitis virus. These results contribute to the implementation of effective interventions for the surveillance and control of tick-borne diseases.
Assuntos
Babesia , Borrelia , Vírus da Encefalite Transmitidos por Carrapatos , Ixodes , Rickettsia , Theileria , Doenças Transmitidas por Carrapatos , Animais , Humanos , Babesia/genética , Vírus da Encefalite Transmitidos por Carrapatos/genética , Anaplasma/genética , Coxiella , Ixodes/microbiologia , Ixodes/parasitologia , Borrelia/genética , Rickettsia/genética , Animais Domésticos , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Animais SelvagensRESUMO
Anaplasma phagocytophilum Major surface protein 4 (MSP4) plays a role during infection and multiplication in host neutrophils and tick vector cells. Recently, vaccination trials with the A. phagocytophilum antigen MSP4 in sheep showed only partial protection against pathogen infection. However, in rabbits immunized with MSP4, this recombinant antigen was protective. Differences between rabbit and sheep antibody responses are probably associated with the recognition of non-protective epitopes by IgG of immunized lambs. To address this question, we applied quantum vaccinomics to identify and characterize MSP4 protective epitopes by a microarray epitope mapping using sera from vaccinated rabbits and sheep. The identified candidate protective epitopes or immunological quantum were used for the design and production of a chimeric protective antigen. Inhibition assays of A. phagocytophilum infection in human HL60 and Ixodes scapularis tick ISE6 cells evidenced protection by IgG from sheep and rabbits immunized with the chimeric antigen. These results supported that the design of new chimeric candidate protective antigens using quantum vaccinomics to improve the protective capacity of antigens in multiple hosts.
RESUMO
Flaviviruses such as West Nile (WNV), Usutu (USUV) and Bagaza (BAGV) virus and avian malaria parasites are vector borne pathogens that circulate naturally between avian and mosquito hosts. WNV and USUV and potentially also BAGV constitute zoonoses. Temporal and spatial cocirculation and coinfection with Plasmodium spp., and West Nile virus has been documented in birds and mosquito vectors, and fatally USUV-infected passerines coinfected with Plasmodium spp. had more severe lesions. Also, WNV, USUV and BAGV have been found to cocirculate. Yet little is known about the interaction of BAGV and malaria parasites during consecutive or coinfections of avian hosts. Here we report mortality of free-living red-legged partridges in a hunting estate in Southern Spain that were coinfected with BAGV and Plasmodium spp. The outbreak occurred in the area where BAGV first emerged in Europe in 2010 and where cocirculation of BAGV, USUV and WNV was confirmed in 2011 and 2013. Partridges were found dead in early October 2019. Birds had mottled locally pale pectoral muscles, enlarged, congestive greenish-black tinged livers and enlarged kidneys. Microscopically congestion and predominantly mononuclear inflammatory infiltrates were evident and Plasmodium phanerozoites were present in the liver, spleen, kidneys, muscle and skin. Molecular testing and sequencing detected Plasmodium spp. and BAGV in different tissues of the partridges, and immunohistochemistry confirmed the presence and colocalization of both pathogens in the liver and spleen. Due to the importance of the red-legged partridge in the ecosystem of the Iberian Peninsula and as driver of regional economy such mortalities are of concern. Such outbreaks may reflect climate change related shifts in host, vector and pathogen ecology and interactions that could emerge similarly for other pathogens.
Assuntos
Doenças das Aves , Coinfecção , Infecções por Flavivirus , Flavivirus , Galliformes , Plasmodium , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Coinfecção/epidemiologia , Coinfecção/veterinária , Ecossistema , Flavivirus/fisiologia , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Codorniz , Espanha/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterináriaRESUMO
Bats have long been associated with multiple pathogens, including viruses affecting humans such as henipaviruses, filoviruses, bunyaviruses and coronaviruses. The alpha and beta coronaviruses genera can infect most mammalian species. Among them, betacoronavirus SARS-CoV, MERS-CoV and SARS-CoV-2, which have caused the three major pandemics in the last two decades, have been proposed to originate in bats. In this study, 194 oral swabs from 22 bats species sampled in 19 locations of the Iberian Peninsula were analysed and characterized by three different PCR tests (coronavirus generic real-time RT-PCR, multiplex conventional PCR, and SARS-CoV-2 specific real-time RT-PCR) to detect bat coronaviruses. Screening with coronavirus generic PCR showed 102 positives out of 194 oral swabs analysed. Then, metabarcoding with multiplex PCR amplified 15 positive samples. Most of the coronaviruses detected in this study belong to alphacoronavirus (α-CoV) genus, with multiple alphacoronaviruses identified by up to five different genetic variants coexisting in the same bat. One of the positive samples identified in a Miniopterus schreibersii bat positive for the generic coronavirus PCR and the specific SARS-CoV-2 PCR was classified as betacoronavirus (-CoV) through phylogenetic analysis. These results support the rapid evolution of coronaviruses to generate new genomic potentially pathogenic variants likely through co-infection and recombination.
RESUMO
The genus Anaplasma contains various species capable of causing disease in animals and humans. Anaplasma marginale is one of the main tick-borne pathogens of bovines in tropical and subtropical regions; however, these bacteria are now being detected more frequently in other regions of the world including Europe. In July 2017, abortions, mortality and morbidity in Retinta breed of cattle were investigated in southwestern Spain. Based on clinical signs, the provisional clinical diagnosis of bovine anaplasmosis was made. A molecular-phylogenetic approach was used to characterize A. marginale using multiple markers, including 16S rRNA, msp1a, msp4 and msp5 genes. The msp1α sequence was different from the previously described sequences from Spain as well as other countries. The isolates of A. marginale were classified as Genotype C, with two of the five tandem repeats in the amino acid sequences MSP1α being novel. The highest variability was observed in the four sequences of msp5 which was depicted in their clustering into multiple clades on a phylogenetic tree. Comparison of msp5 nucleotide sequences and the corresponding amino acid sequences revealed the co-existence of different strains in the same region. This study highlights the occurrence of clinical bovine anaplasmosis in an endemic region of Spain.
Assuntos
Anaplasma marginale , Anaplasmose , Doenças dos Bovinos , Anaplasmose/epidemiologia , Anaplasmose/microbiologia , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Genótipo , Filogenia , RNA Ribossômico 16S/genética , Espanha/epidemiologiaRESUMO
Crimean-Congo haemorrhagic fever virus (CCHFV) is the causative agent of the severe tick-borne, often fatal, zoonotic Crimean-Congo haemorrhagic fever (CCHF), which is widely distributed worldwide. The CCHFV transmission to humans occurs through tick bite, crushing of engorged ticks or contact with infected host blood. Previously, CCHFV genotype Africa III was reported in Spain. Given the emergence of CCHF and the role of ticks in pathogen maintenance and transmission, we investigated the presence and genotype identity of the virus in tick species parasitizing abundant wild host species in south-western Spain. A total of 613 adult ticks were collected from hunter-harvested wild ungulates in twenty locations throughout south-western Spain. Ticks were identified, nucleic acids were extracted, RNA was analysed by a nested RT-PCR targeting CCHFV S segment, and the amplicons were sequenced. According to the 212-bp sequence amplified, the presence of CCHFV human genotype Europe V was detected in Hyalomma lusitanicum and Dermacentor marginatus ticks collected from red deer, fallow deer and Eurasian wild boar in different locations from south-western Spain. Genotype Africa IV was also detected in a H. lusitanicum tick collected from a red deer. The detection of CCHFV in different tick species collected from various wild hosts and localities provided strong evidence of widespread CCHFV presence in the region, suggesting that the circulation of the virus in Spain requires more attention. Additionally, the identification of the CCHFV genotype Europe V in ticks suggested that its introduction in Spain was probably from Eastern Europe.