Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell ; 185(20): 3643-3645, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179663

RESUMO

Retrotransposons are selfish genetic elements that encode an enzyme, reverse transcriptase (RT), which converts the element-encoded RNA into DNA prior to or during genomic integration. New studies provide compelling evidence that a bacterial group II intron-like RT has adapted enzymatic activities associated with RTs to function in host DNA repair.


Assuntos
DNA Polimerase Dirigida por RNA , Retroelementos , Reparo do DNA , Elementos de DNA Transponíveis/genética , Íntrons , RNA , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo
2.
Cell ; 177(4): 837-851.e28, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30955886

RESUMO

L1 retrotransposon-derived sequences comprise approximately 17% of the human genome. Darwinian selective pressures alter L1 genomic distributions during evolution, confounding the ability to determine initial L1 integration preferences. Here, we generated high-confidence datasets of greater than 88,000 engineered L1 insertions in human cell lines that act as proxies for cells that accommodate retrotransposition in vivo. Comparing these insertions to a null model, in which L1 endonuclease activity is the sole determinant dictating L1 integration preferences, demonstrated that L1 insertions are not significantly enriched in genes, transcribed regions, or open chromatin. By comparison, we provide compelling evidence that the L1 endonuclease disproportionately cleaves predominant lagging strand DNA replication templates, while lagging strand 3'-hydroxyl groups may prime endonuclease-independent L1 retrotransposition in a Fanconi anemia cell line. Thus, acquisition of an endonuclease domain, in conjunction with the ability to integrate into replicating DNA, allowed L1 to become an autonomous, interspersed retrotransposon.


Assuntos
Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Linhagem Celular , Endonucleases/genética , Endonucleases/metabolismo , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Genômica , Células HeLa , Humanos , Mutagênese Insercional/genética
3.
Mol Cell ; 75(6): 1286-1298.e12, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31473101

RESUMO

Long interspersed element-1 (LINE-1 or L1) retrotransposition poses a threat to genome integrity, and cells have evolved mechanisms to restrict retrotransposition. However, how cellular proteins facilitate L1 retrotransposition requires elucidation. Here, we demonstrate that single-strand DNA breaks induced by the L1 endonuclease trigger the recruitment of poly(ADP-ribose) polymerase 2 (PARP2) to L1 integration sites and that PARP2 activation leads to the subsequent recruitment of the replication protein A (RPA) complex to facilitate retrotransposition. We further demonstrate that RPA directly binds activated PARP2 through poly(ADP-ribosyl)ation and can protect single-strand L1 integration intermediates from APOBEC3-mediated cytidine deamination in vitro. Paradoxically, we provide evidence that RPA can guide APOBEC3A, and perhaps other APOBEC3 proteins, to sites of L1 integration. Thus, the interplay of L1-encoded and evolutionarily conserved cellular proteins is required for efficient retrotransposition; however, these interactions also may be exploited to restrict L1 retrotransposition in the human genome.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína de Replicação A/metabolismo , Desaminases APOBEC , Animais , Células CHO , Cricetulus , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Células HEK293 , Células HeLa , Humanos , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Proteína de Replicação A/genética
4.
Nucleic Acids Res ; 52(13): 7761-7779, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38850156

RESUMO

Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 (Alu-permissive) strains, but not in HeLa-JVM or HeLa-H1 (Alu-nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA-derived SINEs and tRNA-derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR-Alu (SVA) element, and an L1 ORF1-containing mRNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu-permissive and Alu-nonpermissive HeLa strains, suggesting that 7SL- and tRNA-derived SINEs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1-containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu-permissive and Alu-nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu-nonpermissive HeLa strains.


Assuntos
Elementos Alu , Elementos Nucleotídeos Longos e Dispersos , Humanos , Células HeLa , Elementos Alu/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Animais , Retroelementos/genética , RNA/genética , RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Peixe-Zebra/genética
5.
Cell ; 141(7): 1159-70, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20602998

RESUMO

Highly active (i.e., "hot") long interspersed element-1 (LINE-1 or L1) sequences comprise the bulk of retrotransposition activity in the human genome; however, the abundance of hot L1s in the human population remains largely unexplored. Here, we used a fosmid-based, paired-end DNA sequencing strategy to identify 68 full-length L1s that are differentially present among individuals but are absent from the human genome reference sequence. The majority of these L1s were highly active in a cultured cell retrotransposition assay. Genotyping 26 elements revealed that two L1s are only found in Africa and that two more are absent from the H952 subset of the Human Genome Diversity Panel. Therefore, these results suggest that hot L1s are more abundant in the human population than previously appreciated, and that ongoing L1 retrotransposition continues to be a major source of interindividual genetic variation.


Assuntos
Genoma Humano , Elementos Nucleotídeos Longos e Dispersos , Sequência de Bases , Frequência do Gene , Genética Populacional , Humanos , Dados de Sequência Molecular , Filogenia
6.
Nucleic Acids Res ; 50(18): 10680-10694, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36169232

RESUMO

Condensin I and condensin II are multi-subunit complexes that are known for their individual roles in genome organization and preventing genomic instability. However, interactions between condensin I and condensin II subunits and cooperative roles for condensin I and condensin II, outside of their genome organizing functions, have not been reported. We previously discovered that condensin II cooperates with Gamma Interferon Activated Inhibitor of Translation (GAIT) proteins to associate with Long INterspersed Element-1 (LINE-1 or L1) RNA and repress L1 protein expression and the retrotransposition of engineered L1 retrotransposition in cultured human cells. Here, we report that the L1 3'UTR is required for condensin II and GAIT association with L1 RNA, and deletion of the L1 RNA 3'UTR results in increased L1 protein expression and retrotransposition. Interestingly, like condensin II, we report that condensin I also binds GAIT proteins, associates with the L1 RNA 3'UTR, and represses L1 retrotransposition. We provide evidence that the condensin I protein, NCAPD2, is required for condensin II and GAIT protein association with L1 RNA. Furthermore, condensin I and condensin II subunits interact to form a L1-dependent super condensin complex (SCC) which is located primarily within the cytoplasm of both transformed and primary epithelial cells. These data suggest that increases in L1 expression in epithelial cells promote cytoplasmic condensin protein associations that facilitate a feedback loop in which condensins may cooperate to mediate L1 repression.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Complexos Multiproteicos/metabolismo , Regiões 3' não Traduzidas , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA , Humanos , Interferon gama/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética
7.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836575

RESUMO

Technological advances have allowed improvements in genome reference sequence assemblies. Here, we combined long- and short-read sequence resources to assemble the genome of a female Great Dane dog. This assembly has improved continuity compared to the existing Boxer-derived (CanFam3.1) reference genome. Annotation of the Great Dane assembly identified 22,182 protein-coding gene models and 7,049 long noncoding RNAs, including 49 protein-coding genes not present in the CanFam3.1 reference. The Great Dane assembly spans the majority of sequence gaps in the CanFam3.1 reference and illustrates that 2,151 gaps overlap the transcription start site of a predicted protein-coding gene. Moreover, a subset of the resolved gaps, which have an 80.95% median GC content, localize to transcription start sites and recombination hotspots more often than expected by chance, suggesting the stable canine recombinational landscape has shaped genome architecture. Alignment of the Great Dane and CanFam3.1 assemblies identified 16,834 deletions and 15,621 insertions, as well as 2,665 deletions and 3,493 insertions located on secondary contigs. These structural variants are dominated by retrotransposon insertion/deletion polymorphisms and include 16,221 dimorphic canine short interspersed elements (SINECs) and 1,121 dimorphic long interspersed element-1 sequences (LINE-1_Cfs). Analysis of sequences flanking the 3' end of LINE-1_Cfs (i.e., LINE-1_Cf 3'-transductions) suggests multiple retrotransposition-competent LINE-1_Cfs segregate among dog populations. Consistent with this conclusion, we demonstrate that a canine LINE-1_Cf element with intact open reading frames can retrotranspose its own RNA and that of a SINEC_Cf consensus sequence in cultured human cells, implicating ongoing retrotransposon activity as a driver of canine genetic variation.


Assuntos
Cães/genética , Sequência Rica em GC , Genoma , Sequências Repetitivas Dispersas , Animais , Cães/classificação , Elementos Nucleotídeos Longos e Dispersos , Elementos Nucleotídeos Curtos e Dispersos , Especificidade da Espécie
8.
Genes Dev ; 30(1): 64-77, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26701264

RESUMO

Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53(-) germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5' sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility.


Assuntos
Genes p53/genética , Retroelementos/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Drosophila/genética , Feminino , Variação Genética , Humanos , Masculino , Camundongos , Mutação/genética , Neoplasias/genética , Retroelementos/genética , Peixe-Zebra/genética
9.
Mol Cell ; 60(5): 728-741, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26585388

RESUMO

L1 retrotransposons express proteins (ORF1p and ORF2p) that preferentially mobilize their encoding RNA in cis, but they also can mobilize Alu RNA and, more rarely, cellular mRNAs in trans. Although these RNAs differ in sequence, each ends in a 3' polyadenosine (poly(A)) tract. Here, we replace the L1 polyadenylation signal with sequences derived from a non-polyadenylated long non-coding RNA (MALAT1), which can form a stabilizing triple helix at the 3' end of an RNA. L1/MALAT RNAs accumulate in cells, lack poly(A) tails, and are translated; however, they cannot retrotranspose in cis. Remarkably, the addition of a 16 or 40 base poly(A) tract downstream of the L1/MALAT triple helix restores retrotransposition in cis. The presence of a poly(A) tract also allows ORF2p to bind and mobilize RNAs in trans. Thus, a 3' poly(A) tract is critical for the retrotransposition of sequences that comprise approximately one billion base pairs of human DNA.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Poli A/metabolismo , RNA Mensageiro/química , Endonucleases/genética , Células HeLa , Humanos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , DNA Polimerase Dirigida por RNA/genética
10.
Nucleic Acids Res ; 48(3): 1146-1163, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31853540

RESUMO

Long Interspersed Element-1 (LINE-1) retrotransposition contributes to inter- and intra-individual genetic variation and occasionally can lead to human genetic disorders. Various strategies have been developed to identify human-specific LINE-1 (L1Hs) insertions from short-read whole genome sequencing (WGS) data; however, they have limitations in detecting insertions in complex repetitive genomic regions. Here, we developed a computational tool (PALMER) and used it to identify 203 non-reference L1Hs insertions in the NA12878 benchmark genome. Using PacBio long-read sequencing data, we identified L1Hs insertions that were absent in previous short-read studies (90/203). Approximately 81% (73/90) of the L1Hs insertions reside within endogenous LINE-1 sequences in the reference assembly and the analysis of unique breakpoint junction sequences revealed 63% (57/90) of these L1Hs insertions could be genotyped in 1000 Genomes Project sequences. Moreover, we observed that amplification biases encountered in single-cell WGS experiments led to a wide variation in L1Hs insertion detection rates between four individual NA12878 cells; under-amplification limited detection to 32% (65/203) of insertions, whereas over-amplification increased false positive calls. In sum, these data indicate that L1Hs insertions are often missed using standard short-read sequencing approaches and long-read sequencing approaches can significantly improve the detection of L1Hs insertions present in individual genomes.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Análise de Sequência de DNA/métodos , Linhagem Celular , Genoma Humano , Humanos , Polimorfismo Genético , Análise de Célula Única , Software , Sequenciamento Completo do Genoma
11.
Proc Natl Acad Sci U S A ; 116(41): 20612-20622, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548405

RESUMO

Long interspersed element-1 (LINE-1 or L1) amplifies via retrotransposition. Active L1s encode 2 proteins (ORF1p and ORF2p) that bind their encoding transcript to promote retrotransposition in cis The L1-encoded proteins also promote the retrotransposition of small-interspersed element RNAs, noncoding RNAs, and messenger RNAs in trans Some L1-mediated retrotransposition events consist of a copy of U6 RNA conjoined to a variably 5'-truncated L1, but how U6/L1 chimeras are formed requires elucidation. Here, we report the following: The RNA ligase RtcB can join U6 RNAs ending in a 2',3'-cyclic phosphate to L1 RNAs containing a 5'-OH in vitro; depletion of endogenous RtcB in HeLa cell extracts reduces U6/L1 RNA ligation efficiency; retrotransposition of U6/L1 RNAs leads to U6/L1 pseudogene formation; and a unique cohort of U6/L1 chimeric RNAs are present in multiple human cell lines. Thus, these data suggest that U6 small nuclear RNA (snRNA) and RtcB participate in the formation of chimeric RNAs and that retrotransposition of chimeric RNA contributes to interindividual genetic variation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Neoplasias/genética , Células-Tronco Neurais/metabolismo , RNA Nuclear Pequeno/genética , RNA/genética , Retroelementos/genética , Células HeLa , Humanos , Pseudogenes , RNA/química , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Nuclear Pequeno/química
12.
PLoS Biol ; 16(3): e2003067, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505568

RESUMO

Human Long interspersed element-1 (L1) retrotransposons contain an internal RNA polymerase II promoter within their 5' untranslated region (UTR) and encode two proteins, (ORF1p and ORF2p) required for their mobilization (i.e., retrotransposition). The evolutionary success of L1 relies on the continuous retrotransposition of full-length L1 mRNAs. Previous studies identified functional splice donor (SD), splice acceptor (SA), and polyadenylation sequences in L1 mRNA and provided evidence that a small number of spliced L1 mRNAs retrotransposed in the human genome. Here, we demonstrate that the retrotransposition of intra-5'UTR or 5'UTR/ORF1 spliced L1 mRNAs leads to the generation of spliced integrated retrotransposed elements (SpIREs). We identified a new intra-5'UTR SpIRE that is ten times more abundant than previously identified SpIREs. Functional analyses demonstrated that both intra-5'UTR and 5'UTR/ORF1 SpIREs lack Cis-acting transcription factor binding sites and exhibit reduced promoter activity. The 5'UTR/ORF1 SpIREs also produce nonfunctional ORF1p variants. Finally, we demonstrate that sequence changes within the L1 5'UTR over evolutionary time, which permitted L1 to evade the repressive effects of a host protein, can lead to the generation of new L1 splicing events, which, upon retrotransposition, generates a new SpIRE subfamily. We conclude that splicing inhibits L1 retrotransposition, SpIREs generally represent evolutionary "dead-ends" in the L1 retrotransposition process, mutations within the L1 5'UTR alter L1 splicing dynamics, and that retrotransposition of the resultant spliced transcripts can generate interindividual genomic variation.


Assuntos
Evolução Molecular , Genoma Humano , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Células HeLa , Humanos , Polimorfismo Genético , Regiões Promotoras Genéticas , Splicing de RNA , RNA Mensageiro/metabolismo
13.
PLoS Genet ; 13(10): e1007051, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29028794

RESUMO

LINE-1 (L1) retrotransposons can mobilize (retrotranspose) within the human genome, and mutagenic de novo L1 insertions can lead to human diseases, including cancers. As a result, cells are actively engaged in preventing L1 retrotransposition. This work reveals that the human Condensin II complex restricts L1 retrotransposition in both non-transformed and transformed cell lines through inhibition of L1 transcription and translation. Condensin II subunits, CAP-D3 and CAP-H2, interact with members of the Gamma-Interferon Activated Inhibitor of Translation (GAIT) complex including the glutamyl-prolyl-tRNA synthetase (EPRS), the ribosomal protein L13a, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and NS1 associated protein 1 (NSAP1). GAIT has been shown to inhibit translation of mRNAs encoding inflammatory proteins in myeloid cells by preventing the binding of the translation initiation complex, in response to Interferon gamma (IFN-γ). Excitingly, our data show that Condensin II promotes complexation of GAIT subunits. Furthermore, RNA-Immunoprecipitation experiments in epithelial cells demonstrate that Condensin II and GAIT subunits associate with L1 RNA in a co-dependent manner, independent of IFN-γ. These findings suggest that cooperation between the Condensin II and GAIT complexes may facilitate a novel mechanism of L1 repression, thus contributing to the maintenance of genome stability in somatic cells.


Assuntos
Proteínas de Ciclo Celular/genética , Interferon gama/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas Nucleares/genética , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/genética , Células Epiteliais/metabolismo , Genoma Humano , Humanos , Fator Gênico 3 Estimulado por Interferon/genética , Complexos Multiproteicos/genética , Ligação Proteica , Inibidores da Síntese de Proteínas , RNA Mensageiro/genética , Retroelementos/genética
14.
PLoS Genet ; 11(5): e1005121, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25951186

RESUMO

Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. To investigate the interplay between the L1 retrotransposition machinery and the host cell, we used co-immunoprecipitation in conjunction with liquid chromatography and tandem mass spectrometry to identify cellular proteins that interact with the L1 first open reading frame-encoded protein, ORF1p. We identified 39 ORF1p-interacting candidate proteins including the zinc-finger antiviral protein (ZAP or ZC3HAV1). Here we show that the interaction between ZAP and ORF1p requires RNA and that ZAP overexpression in HeLa cells inhibits the retrotransposition of engineered human L1 and Alu elements, an engineered mouse L1, and an engineered zebrafish LINE-2 element. Consistently, siRNA-mediated depletion of endogenous ZAP in HeLa cells led to a ~2-fold increase in human L1 retrotransposition. Fluorescence microscopy in cultured human cells demonstrated that ZAP co-localizes with L1 RNA, ORF1p, and stress granule associated proteins in cytoplasmic foci. Finally, molecular genetic and biochemical analyses indicate that ZAP reduces the accumulation of full-length L1 RNA and the L1-encoded proteins, yielding mechanistic insight about how ZAP may inhibit L1 retrotransposition. Together, these data suggest that ZAP inhibits the retrotransposition of LINE and Alu elements.


Assuntos
Elementos Alu , Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas de Ligação a RNA/metabolismo , Retroelementos , Animais , Cromatografia Líquida , Células HeLa , Humanos , Imunoprecipitação , Camundongos , Fases de Leitura Aberta , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas de Ligação a RNA/genética , Espectrometria de Massas em Tandem , Peixe-Zebra
15.
Nat Rev Genet ; 12(9): 615-27, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21850042

RESUMO

Transposable elements (TEs) have a unique ability to mobilize to new genomic locations, and the major advance of second-generation DNA sequencing has provided insights into the dynamic relationship between TEs and their hosts. It now is clear that TEs have adopted diverse strategies - such as specific integration sites or patterns of activity - to thrive in host environments that are replete with mechanisms, such as small RNAs or epigenetic marks, that combat TE amplification. Emerging evidence suggests that TE mobilization might sometimes benefit host genomes by enhancing genetic diversity, although TEs are also implicated in diseases such as cancer. Here, we discuss recent findings about how, where and when TEs insert in diverse organisms.


Assuntos
Elementos de DNA Transponíveis , Epigenômica/métodos , Variação Genética , Metilação de DNA , Reparo do DNA , Evolução Molecular , Genoma Humano , Genoma de Planta , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Análise de Sequência de DNA , Telômero/genética , Telômero/metabolismo
16.
Nature ; 466(7307): 769-73, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20686575

RESUMO

Long interspersed element-1 (LINE-1 or L1) retrotransposition continues to affect human genome evolution. L1s can retrotranspose in the germline, during early development and in select somatic cells; however, the host response to L1 retrotransposition remains largely unexplored. Here we show that reporter genes introduced into the genome of various human embryonic carcinoma-derived cell lines (ECs) by L1 retrotransposition are rapidly and efficiently silenced either during or immediately after their integration. Treating ECs with histone deacetylase inhibitors rapidly reverses this silencing, and chromatin immunoprecipitation experiments revealed that reactivation of the reporter gene was correlated with changes in chromatin status at the L1 integration site. Under our assay conditions, rapid silencing was also observed when reporter genes were delivered into ECs by mouse L1s and a zebrafish LINE-2 element, but not when similar reporter genes were delivered into ECs by Moloney murine leukaemia virus or human immunodeficiency virus, suggesting that these integration events are silenced by distinct mechanisms. Finally, we demonstrate that subjecting ECs to culture conditions that promote differentiation attenuates the silencing of reporter genes delivered by L1 retrotransposition, but that differentiation, in itself, is not sufficient to reactivate previously silenced reporter genes. Thus, our data indicate that ECs differ from many differentiated cells in their ability to silence reporter genes delivered by L1 retrotransposition.


Assuntos
Células-Tronco de Carcinoma Embrionário/metabolismo , Epigênese Genética/genética , Inativação Gênica , Retroelementos/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Células-Tronco de Carcinoma Embrionário/patologia , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes Reporter/genética , Engenharia Genética , Vetores Genéticos/genética , Genoma Humano/genética , HIV/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Camundongos , Modelos Genéticos , Vírus da Leucemia Murina de Moloney/genética , Peixe-Zebra/genética
17.
Nucleic Acids Res ; 42(6): 3803-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24371271

RESUMO

Retrotransposons are mobile genetic elements, and their mobility can lead to genomic instability. Retrotransposon insertions are associated with a diverse range of sporadic diseases, including cancer. Thus, it is not a surprise that multiple host defense mechanisms suppress retrotransposition. The 2',5'-oligoadenylate (2-5A) synthetase (OAS)-RNase L system is a mechanism for restricting viral infections during the interferon antiviral response. Here, we investigated a potential role for the OAS-RNase L system in the restriction of retrotransposons. Expression of wild type (WT) and a constitutively active form of RNase L (NΔ385), but not a catalytically inactive RNase L mutant (R667A), impaired the mobility of engineered human LINE-1 (L1) and mouse intracisternal A-type particle retrotransposons in cultured human cells. Furthermore, WT RNase L, but not an inactive RNase L mutant (R667A), reduced L1 RNA levels and subsequent expression of the L1-encoded proteins (ORF1p and ORF2p). Consistently, confocal immunofluorescent microscopy demonstrated that WT RNase L, but not RNase L R667A, prevented formation of L1 cytoplasmic foci. Finally, siRNA-mediated depletion of endogenous RNase L in a human ovarian cancer cell line (Hey1b) increased the levels of L1 retrotransposition by ∼2-fold. Together, these data suggest that RNase L might function as a suppressor of structurally distinct retrotransposons.


Assuntos
Endorribonucleases/metabolismo , Genes de Partícula A Intracisternal , Elementos Nucleotídeos Longos e Dispersos , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , RNA Mensageiro/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Nature ; 460(7259): 1127-31, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19657334

RESUMO

Long interspersed element 1 (LINE-1 or L1) retrotransposons have markedly affected the human genome. L1s must retrotranspose in the germ line or during early development to ensure their evolutionary success, yet the extent to which this process affects somatic cells is poorly understood. We previously demonstrated that engineered human L1s can retrotranspose in adult rat hippocampus progenitor cells in vitro and in the mouse brain in vivo. Here we demonstrate that neural progenitor cells isolated from human fetal brain and derived from human embryonic stem cells support the retrotransposition of engineered human L1s in vitro. Furthermore, we developed a quantitative multiplex polymerase chain reaction that detected an increase in the copy number of endogenous L1s in the hippocampus, and in several regions of adult human brains, when compared to the copy number of endogenous L1s in heart or liver genomic DNAs from the same donor. These data suggest that de novo L1 retrotransposition events may occur in the human brain and, in principle, have the potential to contribute to individual somatic mosaicism.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Retroelementos/genética , Regiões 5' não Traduzidas/genética , Encéfalo/citologia , Linhagem Celular , Imunoprecipitação da Cromatina , Metilação de DNA , Feto/citologia , Dosagem de Genes , Humanos , Reação em Cadeia da Polimerase
20.
Hum Mol Genet ; 21(1): 208-18, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21989055

RESUMO

Long interspersed element-1 (LINE-1 or L1) retrotransposons account for nearly 17% of human genomic DNA and represent a major evolutionary force that has reshaped the structure and function of the human genome. However, questions remain concerning both the frequency and the developmental timing of L1 retrotransposition in vivo and whether the mobility of these retroelements commonly results in insertional and post-insertional mechanisms of genomic injury. Cells exhibiting high rates of L1 retrotransposition might be especially at risk for such injury. We assessed L1 mRNA expression and L1 retrotransposition in two biologically relevant cell types, human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), as well as in control parental human dermal fibroblasts (HDFs). Full-length L1 mRNA and the L1 open reading frame 1-encoded protein (ORF1p) were readily detected in hESCs and iPSCs, but not in HDFs. Sequencing analysis proved the expression of human-specific L1 element mRNAs in iPSCs. Bisulfite sequencing revealed that the increased L1 expression observed in iPSCs correlates with an overall decrease in CpG methylation in the L1 promoter region. Finally, retrotransposition of an engineered human L1 element was ~10-fold more efficient in iPSCs than in parental HDFs. These findings indicate that somatic cell reprogramming is associated with marked increases in L1 expression and perhaps increases in endogenous L1 retrotransposition, which could potentially impact the genomic integrity of the resultant iPSCs.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Elementos Nucleotídeos Longos e Dispersos , Mutagênese Insercional , Diferenciação Celular , Metilação de DNA , Humanos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA