Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
EMBO J ; 42(4): e112453, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36594364

RESUMO

Synaptic dysfunction caused by soluble ß-amyloid peptide (Aß) is a hallmark of early-stage Alzheimer's disease (AD), and is tightly linked to cognitive decline. By yet unknown mechanisms, Aß suppresses the transcriptional activity of cAMP-responsive element-binding protein (CREB), a master regulator of cell survival and plasticity-related gene expression. Here, we report that Aß elicits nucleocytoplasmic trafficking of Jacob, a protein that connects a NMDA-receptor-derived signalosome to CREB, in AD patient brains and mouse hippocampal neurons. Aß-regulated trafficking of Jacob induces transcriptional inactivation of CREB leading to impairment and loss of synapses in mouse models of AD. The small chemical compound Nitarsone selectively hinders the assembly of a Jacob/LIM-only 4 (LMO4)/ Protein phosphatase 1 (PP1) signalosome and thereby restores CREB transcriptional activity. Nitarsone prevents impairment of synaptic plasticity as well as cognitive decline in mouse models of AD. Collectively, the data suggest targeting Jacob protein-induced CREB shutoff as a therapeutic avenue against early synaptic dysfunction in AD.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Sinapses/metabolismo
2.
Nat Methods ; 21(6): 1122-1130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831210

RESUMO

Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys. Here, we present a detailed magnetic resonance imaging resource to study structural WM connectivity in the chimpanzee. This open-access resource contains (1) WM reconstructions of a postmortem chimpanzee brain, using the highest-quality diffusion magnetic resonance imaging data yet acquired from great apes; (2) an optimized and validated method for high-quality fiber orientation reconstructions; and (3) major fiber tract segmentations for cross-species morphological comparisons. This dataset enabled us to identify phylogenetically relevant details of the chimpanzee connectome, and we anticipate that it will substantially contribute to understanding human brain evolution.


Assuntos
Encéfalo , Conectoma , Pan troglodytes , Substância Branca , Pan troglodytes/anatomia & histologia , Animais , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Conectoma/métodos , Masculino , Vias Neurais/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Feminino , Mapeamento Encefálico/métodos
3.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526744

RESUMO

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Assuntos
Proteínas Ativadoras de GTPase , Heterozigoto , Microcefalia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Microcefalia/genética , Feminino , Masculino , Pré-Escolar , Proteínas Ativadoras de GTPase/genética , Criança , Transtornos do Neurodesenvolvimento/genética , Mutação com Perda de Função , Animais , Deficiências do Desenvolvimento/genética , Camundongos , Lactente , Fenótipo , Adolescente
4.
Neuroimage ; 268: 119860, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610679

RESUMO

Cell membranes and macromolecules or paramagnetic compounds interact with water proton spins, which modulates magnetic resonance imaging (MRI) contrast providing information on tissue composition. For a further investigation, quantitative magnetization transfer (qMT) parameters (at 3T), including the ratio of the macromolecular and water proton pools, F, and the exchange-rate constant as well as the (observed) longitudinal and the effective transverse relaxation rates (at 3T and 7T), R1obs and R2*, respectively, were measured at high spatial resolution (200 µm) in a slice of fixed marmoset brain and compared to histology results obtained with Gallyas' myelin stain and Perls' iron stain. R1obs and R2* were linearly correlated with the iron content for the entire slice, whereas distinct differences were obtained between gray and white matter for correlations of relaxometry and qMT parameters with myelin content. The combined results suggest that the macromolecular pool interacting with water consists of myelin and (less efficient) non-myelin contributions. Despite strong correlation of F and R1obs, none of these parameters was uniquely specific to myelination. Due to additional sensitivity to iron stores, R1obs and R2* were more sensitive for depicting microstructural differences between cortical layers than F.


Assuntos
Callithrix , Prótons , Animais , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Bainha de Mielina/metabolismo , Ferro/metabolismo , Água
5.
Osteoarthritis Cartilage ; 31(11): 1469-1480, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574111

RESUMO

OBJECTIVE: Capsular repair aims to minimize damage to the hip joint capsular complex (HJCC) and subsequent dislocation risk following total hip arthroplasty (THA). Numerous explanations for its success have been advocated, including neuromuscular feedback loops originating from within the intact HJCC. This research investigates the hypothesis that the HJCC contributes to hip joint stability by analyzing HJCC innervation. METHOD: Twenty-nine samples from the anterior, medial, and lateral aspects of the midportion HJCC of 29 individuals were investigated stereologically and immunohistochemically to identify encapsulated mechanoreceptors according to a modified Freeman and Wyke classification, totaling 11,745 sections. Consecutive slices were observed to determine the nerve course within the HJCC. RESULTS: Few encapsulated mechanoreceptors were found in the HJCC subregions and overlying tissues across the cohort studied. Of regions studied, no significant regional differences in the density of mechanoreceptors were found. No significant difference in mechanoreceptor density was found between sides (left, 10.2×10-4/mm3, 4.0×10-4 - 19.0×10-4/mm3; right 12.9×10-4/mm3, 5.0×10-4 - 22.0×10-4/mm3; mean, 95% confidence intervals) sexes (female 10.4×10-4/mm3, 4.0×10-4 - 18.0×10-4/mm3; male 11.6×10-4/mm3, 5.0×10-4 - 20.0×10-4/mm3; mean, 95% confidence intervals), nor in correlation with age demographics. Myelinated nerves coursed consistently within the HJCC in various orientations. CONCLUSION: Sparse mechanoreceptor density suggests that the HJCC contributes to a limited extent to hip joint stabilization. HJCC nerve terminals may potentially contribute to neuromuscular feedback loops with associated muscles to mediate joint stability in tandem with the active and passive components of the joint.


Assuntos
Artroplastia de Quadril , Luxação do Quadril , Luxações Articulares , Humanos , Masculino , Feminino , Articulação do Quadril , Luxação do Quadril/cirurgia , Cápsula Articular
6.
J Am Soc Nephrol ; 33(4): 699-717, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031570

RESUMO

BACKGROUND: The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiologic role of claudin-10a in the kidney has been unclear. METHODS: To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice, confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining, and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. RESULTS: Mice deficient in claudin-10a were fertile and without overt phenotypes. On knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a result, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison with other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, and unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. CONCLUSIONS: Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyper-reabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.


Assuntos
Claudina-2 , Claudinas/metabolismo , Animais , Cátions/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos , Permeabilidade , Junções Íntimas/fisiologia
7.
Neuroimage ; 247: 118832, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34929383

RESUMO

The accessibility of new wide-scale multimodal imaging techniques led to numerous clearing techniques emerging over the last decade. However, clearing mesoscopic-sized blocks of aged human brain tissue remains an extremely challenging task. Homogenizing refractive indices and reducing light absorption and scattering are the foundation of tissue clearing. Due to its dense and highly myelinated nature, especially in white matter, the human brain poses particular challenges to clearing techniques. Here, we present a comparative study of seven tissue clearing approaches and their impact on aged human brain tissue blocks (> 5 mm). The goal was to identify the most practical and efficient method in regards to macroscopic transparency, brief clearing time, compatibility with immunohistochemical processing and wide-scale multimodal microscopic imaging. We successfully cleared 26 × 26 × 5 mm3-sized human brain samples with two hydrophilic and two hydrophobic clearing techniques. Optical properties as well as light and antibody penetration depths highly vary between these methods. In addition to finding the best clearing approach, we compared three microscopic imaging setups (the Zeiss Laser Scanning Microscope (LSM) 880 , the Miltenyi Biotec Ultramicroscope ll (UM ll) and the 3i Marianas LightSheet microscope) regarding optimal imaging of large-scale tissue samples. We demonstrate that combining the CLARITY technique (Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging compatible Tissue hYdrogel) with the Zeiss LSM 880 and combining the iDISCO technique (immunolabeling-enabled three-dimensional imaging of solvent-cleared organs) with the Miltenyi Biotec UM ll are the most practical and efficient approaches to sufficiently clear aged human brain tissue and generate 3D microscopic images. Our results point out challenges that arise from seven clearing and three imaging techniques applied to non-standardized tissue samples such as aged human brain tissue.


Assuntos
Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem Multimodal , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Pessoa de Meia-Idade , Imagem Óptica/métodos
8.
Neuroimage ; 249: 118906, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35032659

RESUMO

Non-invasive assessment of axon radii via MRI bears great potential for clinical and neuroscience research as it is a main determinant of the neuronal conduction velocity. However, there is a lack of representative histological reference data at the scale of the cross-section of MRI voxels for validating the MRI-visible, effective radius (reff). Because the current gold standard stems from neuroanatomical studies designed to estimate the bulk-determined arithmetic mean radius (rarith) on small ensembles of axons, it is unsuited to estimate the tail-weighted reff. We propose CNN-based segmentation on high-resolution, large-scale light microscopy (lsLM) data to generate a representative reference for reff. In a human corpus callosum, we assessed estimation accuracy and bias of rarith and reff. Furthermore, we investigated whether mapping anatomy-related variation of rarith and reff is confounded by low-frequency variation of the image intensity, e.g., due to staining heterogeneity. Finally, we analyzed the error due to outstandingly large axons in reff. Compared to rarith, reff was estimated with higher accuracy (maximum normalized-root-mean-square-error of reff: 8.5 %; rarith: 19.5 %) and lower bias (maximum absolute normalized-mean-bias-error of reff: 4.8 %; rarith: 13.4 %). While rarith was confounded by variation of the image intensity, variation of reff seemed anatomy-related. The largest axons contributed between 0.8 % and 2.9 % to reff. In conclusion, the proposed method is a step towards representatively estimating reff at MRI voxel resolution. Further investigations are required to assess generalization to other brains and brain areas with different axon radii distributions.


Assuntos
Axônios/ultraestrutura , Microscopia/métodos , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/ultraestrutura , Idoso , Idoso de 80 Anos ou mais , Aprendizado Profundo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
9.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163558

RESUMO

A subpopulation of neurons is less vulnerable against iron-induced oxidative stress and neurodegeneration. A key feature of these neurons is a special extracellular matrix composition that forms a perineuronal net (PN). The PN has a high affinity to iron, which suggests an adapted iron sequestration and metabolism of the ensheathed neurons. Highly active, fast-firing neurons-which are often ensheathed by a PN-have a particular high metabolic demand, and therefore may have a higher need in iron. We hypothesize that PN-ensheathed neurons have a higher intracellular iron concentration and increased levels of iron proteins. Thus, analyses of cellular and regional iron and the iron proteins transferrin (Tf), Tf receptor 1 (TfR), ferritin H/L (FtH/FtL), metal transport protein 1 (MTP1 aka ferroportin), and divalent metal transporter 1 (DMT1) were performed on Wistar rats in the parietal cortex (PC), subiculum (SUB), red nucleus (RN), and substantia nigra (SNpr/SNpc). Neurons with a PN (PN+) have higher iron concentrations than neurons without a PN: PC 0.69 mM vs. 0.51 mM, SUB 0.84 mM vs. 0.69 mM, SN 0.71 mM vs. 0.63 mM (SNpr)/0.45 mM (SNpc). Intracellular Tf, TfR and MTP1 contents of PN+ neurons were consistently increased. The iron concentration of the PN itself is not increased. We also determined the percentage of PN+ neurons: PC 4%, SUB 5%, SNpr 45%, RN 86%. We conclude that PN+ neurons constitute a subpopulation of resilient pacemaker neurons characterized by a bustling iron metabolism and outstanding iron handling capabilities. These properties could contribute to the low vulnerability of PN+ neurons against iron-induced oxidative stress and degeneration.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Nervos Periféricos/metabolismo , Animais , Apoferritinas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Masculino , Ratos , Ratos Wistar , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
10.
J Biol Chem ; 295(4): 955-968, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31822561

RESUMO

Perineuronal nets (PNNs) are conspicuous neuron-specific substructures within the extracellular matrix of the central nervous system that have generated an explosion of interest over the last decade. These reticulated structures appear to surround synapses on the cell bodies of a subset of the neurons in the central nervous system and play key roles in both developmental and adult-brain plasticity. Despite the interest in these structures and compelling demonstrations of their importance in regulating plasticity, their precise functional mechanisms remain elusive. The limited mechanistic understanding of PNNs is primarily because of an incomplete knowledge of their molecular composition and structure and a failure to identify PNN-specific targets. Thus, it has been challenging to precisely manipulate PNNs to rigorously investigate their function. Here, using mouse models and neuronal cultures, we demonstrate a role of receptor protein tyrosine phosphatase zeta (RPTPζ) in PNN structure. We found that in the absence of RPTPζ, the reticular structure of PNNs is lost and phenocopies the PNN structural abnormalities observed in tenascin-R knockout brains. Furthermore, we biochemically analyzed the contribution of RPTPζ to PNN formation and structure, which enabled us to generate a more detailed model for PNNs. We provide evidence for two distinct kinds of interactions of PNN components with the neuronal surface, one dependent on RPTPζ and the other requiring the glycosaminoglycan hyaluronan. We propose that these findings offer important insight into PNN structure and lay important groundwork for future strategies to specifically disrupt PNNs to precisely dissect their function.


Assuntos
Matriz Extracelular/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Agrecanas/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ácido Edético/farmacologia , Matriz Extracelular/efeitos dos fármacos , Heterozigoto , Ácido Hialurônico/farmacologia , Proteínas Imobilizadas/metabolismo , Camundongos Knockout , Modelos Biológicos , Neurônios/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/deficiência , Tenascina/metabolismo
11.
Neuroimage ; 244: 118559, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562697

RESUMO

The human lateral geniculate nucleus (LGN) of the visual thalamus is a key subcortical processing site for visual information analysis. Due to its small size and deep location within the brain, a non-invasive characterization of the LGN and its microstructurally distinct magnocellular (M) and parvocellular (P) subdivisions in humans is challenging. Here, we investigated whether structural quantitative MRI (qMRI) methods that are sensitive to underlying microstructural tissue features enable MR-based mapping of human LGN M and P subdivisions. We employed high-resolution 7 Tesla in-vivo qMRI in N = 27 participants and ultra-high resolution 7 Tesla qMRI of a post-mortem human LGN specimen. We found that a quantitative assessment of the LGN and its subdivisions is possible based on microstructure-informed qMRI contrast alone. In both the in-vivo and post-mortem qMRI data, we identified two components of shorter and longer longitudinal relaxation time (T1) within the LGN that coincided with the known anatomical locations of a dorsal P and a ventral M subdivision, respectively. Through ground-truth histological validation, we further showed that the microstructural MRI contrast within the LGN pertains to cyto- and myeloarchitectonic tissue differences between its subdivisions. These differences were based on cell and myelin density, but not on iron content. Our qMRI-based mapping strategy paves the way for an in-depth understanding of LGN function and microstructure in humans. It further enables investigations into the selective contributions of LGN subdivisions to human behavior in health and disease.


Assuntos
Corpos Geniculados/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Corpos Geniculados/citologia , Humanos , Masculino , Adulto Jovem
12.
Neuroimage ; 239: 118255, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119638

RESUMO

In Parkinson's disease, the depletion of iron-rich dopaminergic neurons in nigrosome 1 of the substantia nigra precedes motor symptoms by two decades. Methods capable of monitoring this neuronal depletion, at an early disease stage, are needed for early diagnosis and treatment monitoring. Magnetic resonance imaging (MRI) is particularly suitable for this task due to its sensitivity to tissue microstructure and in particular, to iron. However, the exact mechanisms of MRI contrast in the substantia nigra are not well understood, hindering the development of powerful biomarkers. In the present report, we illuminate the contrast mechanisms in gradient and spin echo MR images in human nigrosome 1 by combining quantitative 3D iron histology and biophysical modeling with quantitative MRI on post mortem human brain tissue. We show that the dominant contribution to the effective transverse relaxation rate (R2*) in nigrosome 1 originates from iron accumulated in the neuromelanin of dopaminergic neurons. This contribution is appropriately described by a static dephasing approximation of the MRI signal. We demonstrate that the R2* contribution from dopaminergic neurons reflects the product of cell density and cellular iron concentration. These results demonstrate that the in vivo monitoring of neuronal density and iron in nigrosome 1 may be feasible with MRI and provide directions for the development of biomarkers for an early detection of dopaminergic neuron depletion in Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/química , Ferro/análise , Imageamento por Ressonância Magnética/métodos , Substância Negra/citologia , Idoso de 80 Anos ou mais , Biofísica , Ferritinas/análise , Humanos , Masculino , Melaninas/análise , Pessoa de Meia-Idade , Modelos Neurológicos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Software , Substância Negra/química
13.
Eur J Neurosci ; 53(12): 3889-3904, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32737917

RESUMO

Selected types of neurons in the central nervous system are associated with a specialized form of extracellular matrix. These so-called perineuronal nets (PNs) are supramolecular structures surrounding neuronal somata, proximal dendrites and axon initial segments. PNs are involved in the regulation of plasticity and synaptic physiology. In addition, PNs were proposed to carry neuroprotective functions as PN-ensheathed neurons are mostly spared of tau pathology in brains of Alzheimer patients. Recently, the neuroprotective action of PNs was confirmed experimentally, demonstrating (i) that mainly aggrecan mediates the neuroprotective function of PNs and (ii) that aggrecan seems to generate an external shielding preventing the internalization of pathological forms of tau. In the present study, we aimed at extending these findings and hypothesized that aggrecan further provides an intracellular protection by preventing mutation-triggered formation of pathological forms of tau. We used crossbreds of TauP301L mice and heterozygous aggrecan mice which are characterized by spontaneous deletion of the aggrecan allele. We analysed the extent of tau pathology in dependence of aggrecan protein amount by applying immunohistochemistry, Western blotting and ELISA. The results clearly indicate that aggrecan has no significant impact on tau aggregation in the brainstem of our mouse model. Still, reduced aggrecan levels were accompanied by increased levels of tau protein and reduced number of Tau-1-positive neurons, which indicate an increase in phosphorylation of tau. In conclusion, these data demonstrate a correlation between aggrecan and P301L mutation-triggered tau expression and phosphorylation in our bigenic mouse model.


Assuntos
Neurônios , Proteínas tau , Agrecanas/genética , Agrecanas/metabolismo , Animais , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Proteínas tau/genética , Proteínas tau/metabolismo
14.
Brain ; 142(9): 2558-2571, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327002

RESUMO

Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.


Assuntos
Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/metabolismo , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Norepinefrina/metabolismo , Biomarcadores/metabolismo , Humanos
15.
Molecules ; 25(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013170

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD), including dementia with Lewy bodies (DLB), account for the majority of dementia cases worldwide. Interestingly, a significant number of patients have clinical and neuropathological features of both AD and PD, i.e., the presence of amyloid deposits and Lewy bodies in the neocortex. The identification of α-synuclein peptides in amyloid plaques in DLB brain led to the hypothesis that both peptides mutually interact with each other to facilitate neurodegeneration. In this article, we report the influence of Aß(1-42) and pGlu-Aß(3-42) on the aggregation of α-synuclein in vitro. The aggregation of human recombinant α-synuclein was investigated using thioflavin-T fluorescence assay. Fibrils were investigated by means of antibody conjugated immunogold followed by transmission electron microscopy (TEM). Our data demonstrate a significantly increased aggregation propensity of α-synuclein in the presence of minor concentrations of Aß(1-42) and pGlu-Aß(3-42) for the first time, but without effect on toxicity on mouse primary neurons. The analysis of the composition of the fibrils by TEM combined with immunogold labeling of the peptides revealed an interaction of α-synuclein and Aß in vitro, leading to an accelerated fibril formation. The analysis of kinetic data suggests that significantly enhanced nucleus formation accounts for this effect. Additionally, co-occurrence of α-synuclein and Aß and pGlu-Aß, respectively, under pathological conditions was confirmed in vivo by double immunofluorescent labelings in brains of aged transgenic mice with amyloid pathology. These observations imply a cross-talk of the amyloid peptides α-synuclein and Aß species in neurodegeneration. Such effects might be responsible for the co-occurrence of Lewy bodies and plaques in many dementia cases.


Assuntos
Peptídeos beta-Amiloides/química , Agregados Proteicos , alfa-Sinucleína/química , Doença de Alzheimer , Amiloide/química , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Sobrevivência Celular , Imunofluorescência , Cinética , Corpos de Lewy , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/metabolismo
16.
Magn Reson Med ; 81(2): 1265-1279, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30276849

RESUMO

PURPOSE: Water mobility in tissues is related to the microstructure that modulates diffusion and spin relaxation. Previous work has shown that the extracellular matrix (ECM) impacts water diffusion in cartilage. To investigate if similar contributions to image contrast exist for brain, which is characterized by a substantially lower ECM content, diffusion and relaxation were studied in fixed samples from goat and human thalamus before and after enzymatic digestion of ECM compounds. Selected experiments in human corpus callosum were included for comparing subcortical gray matter and white matter. METHODS: Digestion of matrix components was achieved by treatment with hyaluronidase. Nonlocalized pulsed field gradient measurements were performed with b values between 0.6 and 18,000 s/mm2 at 3T and temperatures between 0°C and 20°C, in addition to T1 and T2 relaxation measurements. The data were fitted to multiexponential models to account for different water compartments. After the measurements, the samples were sliced and stained for ECM-sensitive markers to verify efficient digestion. RESULTS: Microstructural alterations associated with hyaluronan digestion did not lead to measurable effects on water diffusion or T 2 . However, T1 of the main relaxographic component, attributed to intra-/extracellular water, decreased by 7%. CONCLUSION: Investigations with very strong gradients did not reveal a detectable effect on water diffusion or T 2 after hyaluronan removal, indicating that the brain ECM content is too low to produce a detectable effect. The subtle alteration of T1 upon hyaluronidase treatment might reflect a modulation of intercompartmental water exchange properties.


Assuntos
Mapeamento Encefálico , Matriz Extracelular/metabolismo , Substância Cinzenta/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Água/química , Idoso de 80 Anos ou mais , Algoritmos , Animais , Membrana Celular/metabolismo , Corpo Caloso/diagnóstico por imagem , Difusão , Cabras , Humanos , Hialuronoglucosaminidase/química , Espectroscopia de Ressonância Magnética , Masculino , Neurônios/patologia , Distribuição Normal , Proteoglicanas/química , Especificidade da Espécie , Temperatura
17.
Magn Reson Med ; 82(5): 1804-1811, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31293007

RESUMO

PURPOSE: To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation-dependent part of R2* using a single gradient-recalled echo (GRE) measurement. METHODS: The proposed method utilized a temporal second-order approximation of the hollow-cylinder-fiber model, in which the parameter describing the linear signal decay corresponded to the orientation-independent part of R2* . The estimated parameters were compared to the classical, mono-exponential decay model for R2* in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of R2* , it was compared to the established phenomenological method for separating R2* into orientation-dependent and -independent parts. RESULTS: Using the phenomenological method on the classical signal model, the well-known separation of R2* into orientation-dependent and -independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed. CONCLUSIONS: Since the proposed second-order model features orientation-dependent and -independent components at distinct temporal orders, it can be used to remove the orientation dependence of R2* using only a single GRE measurement.


Assuntos
Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Autopsia , Biofísica , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade
18.
BMC Neurosci ; 20(1): 25, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142282

RESUMO

BACKGROUND: Brain iron is an essential as well as a toxic redox active element. Physiological levels are not uniform among the different cell types. Besides the availability of quantitative methods, the knowledge about the brain iron lags behind. Thereby, disclosing the mechanisms of brain iron homeostasis helps to understand pathological iron-accumulations in diseased and aged brains. With our study we want to contribute closing the gap by providing quantitative data on the concentration and distribution of iron in neurons and glial cells in situ. Using a nuclear microprobe and scanning proton induced X-ray emission spectrometry we performed quantitative elemental imaging on rat brain sections to analyze the iron concentrations of neurons and glial cells. RESULTS: Neurons were analyzed in the neocortex, subiculum, substantia nigra and deep cerebellar nuclei revealing an iron level between [Formula: see text] and [Formula: see text]. The iron concentration of neocortical oligodendrocytes is fivefold higher, of microglia threefold higher and of astrocytes twofold higher compared to neurons. We also analyzed the distribution of subcellular iron concentrations in the cytoplasm, nucleus and nucleolus of neurons. The cytoplasm contains on average 73% of the total iron, the nucleolus-although a hot spot for iron-due to its small volume only 6% of total iron. Additionally, the iron level in subcellular fractions were measured revealing that the microsome fraction, which usually contains holo-ferritin, has the highest iron content. We also present an estimate of the cellular ferritin concentration calculating [Formula: see text] ferritin molecules per [Formula: see text] in rat neurons. CONCLUSION: Glial cells are the most iron-rich cells in the brain. Imbalances in iron homeostasis that lead to neurodegeneration may not only be originate from neurons but also from glial cells. It is feasible to estimate the ferritin concentration based on measured iron concentrations and a reasonable assumptions on iron load in the brain.


Assuntos
Ferritinas/metabolismo , Ferro/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Espectrometria por Raios X/métodos , Animais , Encéfalo/metabolismo , Feminino , Masculino , Ratos , Frações Subcelulares/metabolismo
19.
BMC Biol ; 16(1): 99, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30253762

RESUMO

BACKGROUND: Perineuronal nets (PNNs) are specialized aggregations of extracellular matrix (ECM) molecules surrounding specific neurons in the central nervous system (CNS). PNNs are supposed to control synaptic transmission and are frequently associated with neurons firing at high rates, including principal neurons of auditory brainstem nuclei. The origin of high-frequency activity of auditory brainstem neurons is the indefatigable sound-driven transmitter release of inner hair cells (IHCs) in the cochlea. RESULTS: Here, we show that synaptic poles of IHCs are ensheathed by basket-like ECM complexes formed by the same molecules that constitute PNNs of neurons in the CNS, including brevican, aggreccan, neurocan, hyaluronan, and proteoglycan link proteins 1 and 4 and tenascin-R. Genetic deletion of brevican, one of the main components, resulted in a massive degradation of ECM baskets at IHCs, a significant impairment in spatial coupling of pre- and postsynaptic elements and mild impairment of hearing. CONCLUSIONS: These ECM baskets potentially contribute to control of synaptic transmission at IHCs and might be functionally related to PNNs of neurons in the CNS.


Assuntos
Brevicam/genética , Orelha Interna/fisiologia , Matriz Extracelular/metabolismo , Transmissão Sináptica/fisiologia , Animais , Brevicam/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout
20.
Neuroimage ; 182: 417-428, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29196268

RESUMO

Recent breakthroughs in magnetic resonance imaging (MRI) enabled quantitative relaxometry and diffusion-weighted imaging with sub-millimeter resolution. Combined with biophysical models of MR contrast the emerging methods promise in vivo mapping of cyto- and myelo-architectonics, i.e., in vivo histology using MRI (hMRI) in humans. The hMRI methods require histological reference data for model building and validation. This is currently provided by MRI on post mortem human brain tissue in combination with classical histology on sections. However, this well established approach is limited to qualitative 2D information, while a systematic validation of hMRI requires quantitative 3D information on macroscopic voxels. We present a promising histological method based on optical 3D imaging combined with a tissue clearing method, Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging compatible Tissue hYdrogel (CLARITY), adapted for hMRI validation. Adapting CLARITY to the needs of hMRI is challenging due to poor antibody penetration into large sample volumes and high opacity of aged post mortem human brain tissue. In a pilot experiment we achieved transparency of up to 8 mm-thick and immunohistochemical staining of up to 5 mm-thick post mortem brain tissue by a combination of active and passive clearing, prolonged clearing and staining times. We combined 3D optical imaging of the cleared samples with tailored image processing methods. We demonstrated the feasibility for quantification of neuron density, fiber orientation distribution and cell type classification within a volume with size similar to a typical MRI voxel. The presented combination of MRI, 3D optical microscopy and image processing is a promising tool for validation of MRI-based microstructure estimates.


Assuntos
Encéfalo , Técnicas Histológicas/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Microscopia/métodos , Neuroimagem/métodos , Coloração e Rotulagem/métodos , Bancos de Tecidos , Idoso , Autopsia , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA