Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 287(14): 11422-36, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22318726

RESUMO

The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3-10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R-/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking. Using R-/IR-A cells, we discovered that insulin evoked significant IR-A internalization, a process modestly affected by IGF-II. However, the differential internalization was not due to IR-A ubiquitination. Notably, prolonged stimulation of R-/IR-A cells with insulin, but not with IGF-II, targeted the receptor to a degradative pathway. Similarly, the docking protein insulin receptor substrate 1 (IRS-1) was down-regulated after prolonged insulin but not IGF-II exposure. Similar results were also obtained in experiments using [NMeTyr(B26)]-insulin, an insulin analog with IR-A binding affinity similar to IGF-II. Finally, we discovered that IR-A was internalized through clathrin-dependent and -independent pathways, which differentially regulated the activation of downstream effectors. Collectively, our results suggest that a lower affinity of IGF-II for the IR-A promotes lower IR-A phosphorylation and activation of early downstream effectors vis à vis insulin but may protect IR-A and IRS-1 from down-regulation thereby evoking sustained and robust mitogenic stimuli.


Assuntos
Endocitose/efeitos dos fármacos , Fator de Crescimento Insulin-Like II/farmacologia , Insulina/farmacologia , Receptor de Insulina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Clatrina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Ligantes , Camundongos , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
2.
Front Oncol ; 11: 694320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195095

RESUMO

The constitutive and dysregulated expression of the transcription factor MYCN has a central role in the pathogenesis of the paediatric brain tumour medulloblastoma, with an increased expression of this oncogene correlating with a worse prognosis. Consequently, the genomic and functional alterations of MYCN represent a major therapeutic target to attenuate tumour growth in medulloblastoma. This review will provide a comprehensive synopsis of the biological role of MYCN and its family components, their interaction with distinct signalling pathways, and the implications of this network in medulloblastoma development. We will then summarise the current toolbox for targeting MYCN and highlight novel therapeutic avenues that have the potential to results in better-tailored clinical treatments.

3.
Matrix Biol Plus ; 6-7: 100022, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543020

RESUMO

Bladder cancer is one of the most common and aggressive cancers and, regardless of the treatment, often recurs and metastasizes. Thus, a better understanding of the mechanisms regulating urothelial tumorigenesis is critical for the design and implementation of rational therapeutic strategies. We previously discovered that the IGF-IR axis is critical for bladder cancer cell motility and invasion, suggesting a possible role in bladder cancer progression. However, IGF-IR depletion in metastatic bladder cancer cells only partially inhibited anchorage-independent growth. Significantly, metastatic bladder cancer cells have decreased IGF-IR levels but overexpressed the insulin receptor isoform A (IR-A), suggesting that the latter may play a more prevalent role than the IGF-IR in bladder tumor progression. The collagen receptor DDR1 cross-talks with both the IGF-IR and IR in breast cancer, and previous data suggest a role of DDR1 in bladder cancer. Here, we show that DDR1 is expressed in invasive and metastatic, but not in papillary, non-invasive bladder cancer cells. DDR1 is phosphorylated upon stimulation with IGF-I, IGF-II, and insulin, co-precipitates with the IGF-IR, and the IR-A and transient DDR1 depletion severely inhibits IGF-I-induced motility. We further demonstrate that DDR1 interacts with Pyk2 and non-muscle myosin IIA in ligands-dependent fashion, suggesting that it may link the IGF-IR and IR-A to the regulation of F-actin cytoskeleton dynamics. Similarly to the IGF-IR, DDR1 is upregulated in bladder cancer tissues compared to healthy tissue controls. Thus, our findings provide the first characterization of the molecular cross-talk between DDR1 and the IGF-I system and could lead to the identification of novel targets for therapeutic intervention in bladder cancer. Moreover, the expression profiles of IGF-IR, IR-A, DDR1, and downstream effectors could serve as a novel biomarker signature with diagnostic and prognostic significance.

4.
Nat Neurosci ; 23(7): 842-853, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424282

RESUMO

Many immunotherapies act by enhancing the ability of cytotoxic T cells to kill tumor cells. Killing depends on T cell recognition of antigens presented by class I major histocompatibility complex (MHC-I) proteins on tumor cells. In this study, we showed that medulloblastomas lacking the p53 tumor suppressor do not express surface MHC-I and are therefore resistant to immune rejection. Mechanistically, this is because p53 regulates expression of the peptide transporter Tap1 and the aminopeptidase Erap1, which are required for MHC-I trafficking to the cell surface. In vitro, tumor necrosis factor (TNF) or lymphotoxin-ß receptor agonist can rescue expression of Erap1, Tap1 and MHC-I on p53-mutant tumor cells. In vivo, low doses of TNF prolong survival and synergize with immune checkpoint inhibitors to promote tumor rejection. These studies identified p53 as a key regulator of immune evasion and suggest that TNF could be used to enhance sensitivity of tumors to immunotherapy.


Assuntos
Neoplasias Cerebelares/imunologia , Meduloblastoma/imunologia , Evasão Tumoral/imunologia , Fator de Necrose Tumoral alfa/imunologia , Proteína Supressora de Tumor p53/imunologia , Animais , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Oncotarget ; 7(26): 39980-39995, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27220888

RESUMO

We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer.


Assuntos
Cisplatino/farmacologia , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Actinas/metabolismo , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Camundongos Transgênicos , Invasividade Neoplásica , Transplante de Neoplasias , Fenótipo , Progranulinas , RNA Interferente Pequeno/metabolismo , Urotélio/patologia
7.
Oncotarget ; 6(13): 10825-39, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25839164

RESUMO

We recently established a critical role for the growth factor progranulin in bladder cancer insofar as progranulin promotes urothelial cancer cell motility and contributes, as an autocrine growth factor, to the transformed phenotype by modulating invasion and anchorage-independent growth. In addition, progranulin expression is upregulated in invasive bladder cancer tissues compared to normal controls. However, the molecular mechanisms of progranulin action in bladder cancer have not been fully elucidated. In this study, we searched for novel progranulin-interacting proteins using pull-down assays with recombinant progranulin and proteomics. We discovered that drebrin, an F-actin binding protein, bound progranulin in urothelial cancer cells. We characterized drebrin function in urothelial cancer cell lines and showed that drebrin is critical for progranulin-dependent activation of the Akt and MAPK pathways and modulates motility, invasion and anchorage-independent growth. In addition, drebrin regulates tumor formation in vivo and its expression is upregulated in bladder cancer tissues compared to normal tissue controls. Our data are translationally relevant as indicate that drebrin exerts an essential functional role in the regulation of progranulin action and may constitute a novel target for therapeutic intervention in bladder tumors. In addition, drebrin may serve as novel biomarker for bladder cancer.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neuropeptídeos/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neuropeptídeos/genética , Progranulinas , Ligação Proteica , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais , Transfecção , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Urotélio/metabolismo , Urotélio/patologia
8.
Endocrinology ; 156(1): 58-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25365768

RESUMO

The growth factor progranulin is as an important regulator of transformation in several cellular systems. We have previously demonstrated that progranulin acts as an autocrine growth factor and stimulates motility, proliferation, and anchorage-independent growth of castration-resistant prostate cancer cells, supporting the hypothesis that progranulin may play a critical role in prostate cancer progression. However, the mechanisms regulating progranulin action in castration-resistant prostate cancer cells have not been characterized. Sortilin, a single-pass type I transmembrane protein of the vacuolar protein sorting 10 family, binds progranulin in neurons and negatively regulates progranulin signaling by mediating progranulin targeting for lysosomal degradation. However, whether sortilin is expressed in prostate cancer cells and plays any role in regulating progranulin action has not been established. Here, we show that sortilin is expressed at very low levels in castration-resistant PC3 and DU145 cells. Significantly, enhancing sortilin expression in PC3 and DU145 cells severely diminishes progranulin levels and inhibits motility, invasion, proliferation, and anchorage-independent growth. In addition, sortilin overexpression negatively modulates Akt (protein kinase B, PKB) stability. These results are recapitulated by depleting endogenous progranulin in PC3 and DU145 cells. On the contrary, targeting sortilin by short hairpin RNA approaches enhances progranulin levels and promotes motility, invasion, and anchorage-independent growth. We dissected the mechanisms of sortilin action and demonstrated that sortilin promotes progranulin endocytosis through a clathrin-dependent pathway, sorting into early endosomes and subsequent lysosomal degradation. Collectively, these results point out a critical role for sortilin in regulating progranulin action in castration-resistant prostate cancer cells, suggesting that sortilin loss may contribute to prostate cancer progression.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Progranulinas
9.
Oncotarget ; 6(18): 16084-105, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-25840417

RESUMO

The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression.Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression.Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired.These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR.


Assuntos
Fibroblastos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Somatomedina/metabolismo , Tirosina/metabolismo , Animais , Apoptose , Western Blotting , Ciclo Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Receptor com Domínio Discoidina 1 , Ensaio de Imunoadsorção Enzimática , Fibroblastos/citologia , Humanos , Imunoprecipitação , Camundongos , Microscopia Confocal , Neoplasias/genética , Fosforilação , Transporte Proteico , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Artigo em Inglês | MEDLINE | ID: mdl-25566192

RESUMO

The insulin-like growth factor system and its two major receptors, the IGF receptor I (IGF-IR) and IR, plays a central role in a variety of physiological cellular processes including growth, differentiation, motility, and glucose homeostasis. The IGF-IR is also essential for tumorigenesis through its capacity to protect cancer cells from apoptosis. The IR is expressed in two isoforms: the IR isoform A (IR-A) and isoform B (IR-B). While the role of the IR-B in the regulation of metabolic effects has been known for several years, more recent evidence suggests that the IR, and in particular the IR-A, may be involved in the pathogenesis of cancer. Ligand-mediated endocytosis of tyrosine-kinases receptors plays a critical role in modulating the duration and intensity of receptors action but while the signaling pathways induced by the IGF-IR and IR are quite characterized, very little is still known about the mechanisms and proteins that regulate ligand-induced IGF-IR and IR endocytosis and trafficking. In addition, how these processes affect receptor downstream signaling has not been fully characterized. Here, we discuss the current understanding of the mechanisms and proteins regulating IGF-IR and IR endocytosis and sorting and their implications in modulating ligand-induced biological responses.

11.
Matrix Biol ; 35: 82-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24389353

RESUMO

The proteoglycan decorin, a key component of the tumor stroma, regulates the action of several tyrosine-kinase receptors, including the EGFR, Met and the IGF-IR. Notably, the action of decorin in regulating the IGF-I system differs between normal and transformed cells. In normal cells, decorin binds with high affinity to both the natural ligand IGF-I and the IGF-I receptor (IGF-IR) and positively regulates IGF-IR activation and downstream signaling. In contrast, in transformed cells, decorin negatively regulates ligand-induced IGF-IR activation, downstream signaling and IGF-IR-dependent biological responses. Whether decorin may bind another member of the IGF-I system, the insulin receptor A isoform (IR-A) and its cognate ligands, insulin, IGF-II and proinsulin, have not been established. Here we show that decorin bound with high affinity insulin and IGF-II and, to a lesser extent, proinsulin and IR-A. We utilized as a cell model system mouse embryonic fibroblasts homozygous for a targeted disruption of the Igf1r gene (designated R(-) cells) which were stably transfected with a human construct harboring the IR-A isoform of the receptor. Using these R(-)/IR-A cells, we demonstrate that decorin did not affect ligand-induced phosphorylation of the IR-A but enhanced IR-A downregulation after prolonged IGF-II stimulation without affecting insulin and proinsulin-dependent effects on IR-A stability. In addition, decorin significantly inhibited IGF-II-mediated activation of the Akt pathways, without affecting insulin and proinsulin-dependent signaling. Notably, decorin significantly inhibited IGF-II-mediated cell proliferation of R(-)/IR-A cells but affected neither insulin- nor proinsulin-dependent mitogenesis. Collectively, these results suggest that decorin differentially regulates the action of IR-A ligands. Decorin preferentially inhibits IGF-II-mediated biological responses but does not affect insulin- or proinsulin-dependent signaling. Thus, decorin loss may contribute to tumor initiation and progression in malignant neoplasms which depend on an IGF-II/IR-A autocrine loop.


Assuntos
Decorina/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Proinsulina/metabolismo , Isoformas de Proteínas/metabolismo
12.
Endocrinology ; 155(4): 1207-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24437490

RESUMO

We have previously demonstrated that, in prostate cancer cells, androgens up-regulate IGF-I receptor (IGF-IR) by inducing cAMP-response element-binding protein (CREB) activation and CREB-dependent IGF-IR gene transcription through androgen receptor (AR)-dependent membrane-initiated effects. This IGF-IR up-regulation is not blocked by classical antiandrogens and sensitizes cells to IGF-I-induced biological effects. Metformin exerts complex antitumoral functions in various models and may inhibit CREB activation in hepatocytes. We, therefore, evaluated whether metformin may affect androgen-dependent IGF-IR up-regulation. In the AR(+) LNCaP prostate cancer cells, we found that metformin inhibits androgen-induced CRE activity and IGF-IR gene transcription. CRE activity requires the formation of a CREB-CREB binding protein-CREB regulated transcription coactivator 2 (CRTC2) complex, which follows Ser133-CREB phosphorylation. Metformin inhibited Ser133-CREB phosphorylation and induced nuclear exclusion of CREB cofactor CRTC2, thus dissociating the CREB-CREB binding protein-CRTC2 complex and blocking its transcriptional activity. Similarly to metformin action, CRTC2 silencing inhibited IGF-IR promoter activity. Moreover, metformin blocked membrane-initiated signals of AR to the mammalian target of rapamycin/p70S6Kinase pathway by inhibiting AR phosphorylation and its association with c-Src. AMPK signals were also involved to some extent. By inhibiting androgen-dependent IGF-IR up-regulation, metformin reduced IGF-I-mediated proliferation of LNCaP cells. These results indicate that, in prostate cancer cells, metformin inhibits IGF-I-mediated biological effects by disrupting membrane-initiated AR action responsible for IGF-IR up-regulation and suggest that metformin could represent a useful adjunct to the classical antiandrogen therapy.


Assuntos
Androgênios/metabolismo , Membrana Celular/efeitos dos fármacos , Metformina/farmacologia , Neoplasias da Próstata/metabolismo , Receptor IGF Tipo 1/metabolismo , Regulação para Cima , Antineoplásicos/farmacologia , Proteína de Ligação a CREB/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Densitometria , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , Masculino , Invasividade Neoplásica , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
13.
J Oncol ; 2012: 635614, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927847

RESUMO

Endocrine cancers are a heterogeneous group of diseases that may arise from endocrine cells in any gland of the endocrine system. These malignancies may show an aggressive behavior and resistance to the common anticancer therapies. The etiopathogenesis of these tumors remains mostly unknown. The normal embryological development and differentiation of several endocrine glands are regulated by specific pituitary tropins, which, in adult life, control the function and trophism of the endocrine gland. Pituitary tropins act in concert with peptide growth factors, including the insulin-like growth factors (IGFs), which are considered key regulators of cell growth, proliferation, and apoptosis. While pituitary TSH is regarded as tumor-promoting factor for metastatic thyroid cancer, the role of other pituitary hormones in endocrine cancers is uncertain. However, multiple molecular abnormalities of the IGF system frequently occur in endocrine cancers and may have a role in tumorigenesis as well as in tumor progression and resistance to therapies. Herein, we will review studies indicating a role of IGF system dysregulation in endocrine cancers and will discuss the possible implications of these findings for tumor prevention and treatment, with a major focus on cancers from the thyroid, adrenal, and ovary, which are the most extensively studied.

14.
Mol Endocrinol ; 25(8): 1456-68, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21680660

RESUMO

The isoform A of the insulin receptor (IR) (IR-A) is a bifunctional receptor, because it binds both insulin and IGF-II. IR-A activation by IGF-II plays a role in development, but its physiological role in adults is unknown. IGF-II signaling through IR-A is deregulated in cancer and favors tumor progression. We hypothesized that IGF-II binding to the IR-A elicits a unique signaling pathway. In order to obtain an unbiased evaluation of IR-A substrates differentially involved after IGF-II and insulin stimulation, we performed quantitative proteomics of IR-A substrates recruited to tyrosine-phosphorylated protein complexes using stable isotope labeling with amino acids in cell culture in combination with antiphosphotyrosine antibody pull down and mass spectrometry. Using cells expressing only the human IR-A and lacking the IGF-I receptor, we identified 38 IR-A substrates. Only 10 were known IR mediators, whereas 28 substrates were not previously related to IR signaling. Eleven substrates were recruited by stimulation with both ligands: two equally recruited by IGF-II and insulin, three more strongly recruited by IGF-II, and six more strongly recruited by insulin. Moreover, 14 substrates were recruited solely by IGF-II and 13 solely by insulin stimulation. Interestingly, discoidin domain receptors, involved in cell migration and tumor metastasis, and ephrin receptor B4, involved in bidirectional signaling upon cell-cell contact, were predominantly activated by IGF-II. These findings indicate that IR-A activation by IGF-II elicits a unique signaling pathway that may play a distinct role in physiology and in disease.


Assuntos
Fator de Crescimento Insulin-Like II/farmacologia , Insulina/farmacologia , Proteômica/métodos , Receptor de Insulina/metabolismo , Animais , Western Blotting , Linhagem Celular , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Marcação por Isótopo , Camundongos , Modelos Biológicos , Isoformas de Proteínas/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo
15.
Endocrinology ; 150(8): 3594-602, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19443570

RESUMO

A variety of human malignancies overexpresses isoform A of the insulin receptor (IR-A) and produces IGFs (IGF-I and/or IGF-II). IR-A binds IGF-II with high affinity (although 4-fold lower than that for insulin), whereas it binds IGF-I with low affinity (approximately 30-fold lower than that for insulin). However, in engineered cells expressing only the IR-A, but not IGF-I receptor (R(-)/IR-A cells), IGF-II is a more potent mitogen than insulin. Herein, we investigated downstream signaling of IGF-II, IGF-I, and insulin in R(-)/IR-A cells to better understand their role in cell growth. We found that despite inducing a lower IR-A autophosphorylation than insulin, IGF-II was more potent than insulin for activating p70S6 kinase (p70S6K) and approximately equally potent in activating the early peaks of ERK1/2 and Akt. However, ERK1/2 activation persisted longer after IGF-II, whereas Akt activation persisted longer after insulin. Therefore, cells stimulated with IGF-II had a higher p70S6K/Akt activation ratio than cells stimulated with insulin. Remarkably, IGF-I also elicited a similar signaling pattern as IGF-II, despite inducing minimal IR-A autophosphorylation. ERK1/2 and protein kinase C seem to be involved in the preferential stimulation of p70S6K by IGFs. In conclusion, our study has identified a novel complex role of IR-A, which not only elicits a unique signaling pattern after IGF-II binding but also induces substantial downstream signaling upon binding to the low-affinity ligand IGF-I. These results underline the role of IR-A in physiology and disease.


Assuntos
Hipoglicemiantes/farmacologia , Fator de Crescimento Insulin-Like II/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Insulina/farmacologia , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Western Blotting , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Fatores de Iniciação em Eucariotos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA