Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(14): 147001, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702214

RESUMO

We report muon spin rotation and magnetization measurements under pressure on Fe_{1+δ}Se_{1-x}S_{x} with x≈0.11. Above p≈0.6 GPa we find a microscopic coexistence of superconductivity with an extended dome of long range magnetic order that spans a pressure range between previously reported separated magnetic phases. The magnetism initially competes on an atomic scale with the coexisting superconductivity leading to a local maximum and minimum of the superconducting T_{c}(p). The maximum of T_{c} corresponds to the onset of magnetism while the minimum coincides with the pressure of strongest competition. A shift of the maximum of T_{c}(p) for a series of single crystals with x up to 0.14 roughly extrapolates to a putative magnetic and superconducting state at ambient pressure for x≥0.2.

2.
Phys Rev Lett ; 120(24): 247001, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29957008

RESUMO

We have observed the spatial distribution of magnetic flux in Nb, Cu/Nb, and Cu/Nb/Co thin films using muon-spin rotation. In an isolated 50-nm-thick Nb film, we find a weak flux expulsion (Meissner effect) which becomes significantly enhanced when adding an adjacent 40 nm layer of Cu. The added Cu layer exhibits a Meissner effect (due to induced superconducting pairs) and is at least as effective as the Nb to expel flux. These results are confirmed by theoretical calculations using the quasiclassical Green's function formalism. An unexpected further significant enhancement of the flux expulsion is observed when adding a thin (2.4 nm) ferromagnetic Co layer to the bottom side of the Nb. This observed cooperation between superconductivity and ferromagnetism, by an unknown mechanism, forms a key ingredient for developing superconducting spintronics.

3.
Phys Rev Lett ; 117(22): 227202, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925730

RESUMO

Here we present a study of magnetism in Co_{0.05}Ti_{0.95}O_{2-δ} anatase films grown by pulsed laser deposition under a variety of oxygen partial pressures and deposition rates. Energy-dispersive spectrometry and transmission electron microscopy analyses indicate that a high deposition rate leads to a homogeneous microstructure, while a very low rate or postannealing results in cobalt clustering. Depth resolved low-energy muon spin rotation experiments show that films grown at a low oxygen partial pressure (≈10^{-6} torr) with a uniform structure are fully magnetic, indicating intrinsic ferromagnetism. First principles calculations identify the beneficial role of low oxygen partial pressure in the realization of uniform carrier-mediated ferromagnetism. This work demonstrates that Co:TiO_{2} is an intrinsic diluted magnetic semiconductor.

4.
Phys Rev Lett ; 113(15): 156801, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375730

RESUMO

We present a direct spectroscopic observation of a shallow hydrogenlike muonium state in SrTiO(3) which confirms the theoretical prediction that interstitial hydrogen may act as a shallow donor in this material. The formation of this muonium state is temperature dependent and appears below ∼ 70K. From the temperature dependence we estimate an activation energy of ∼ 50 meV in the bulk and ∼ 23 meV near the free surface. The field and directional dependence of the muonium precession frequencies further supports the shallow impurity state with a rare example of a fully anisotropic hyperfine tensor. From these measurements we determine the strength of the hyperfine interaction and propose that the muon occupies an interstitial site near the face of the oxygen octahedron in SrTiO(3). The observed shallow donor state provides new insight for tailoring the electronic and optical properties of SrTiO(3)-based oxide interface systems.


Assuntos
Hidrogênio/química , Modelos Teóricos , Óxidos/química , Estrôncio/química , Titânio/química , Mésons , Análise Espectral/métodos , Termodinâmica
5.
Nat Mater ; 11(10): 850-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941330

RESUMO

Cuprates and other high-temperature superconductors consist of two-dimensional layers that are crucial to their properties. The dynamics of the quantum spins in these layers lie at the heart of the mystery of the cuprates. In bulk cuprates such as La(2)CuO(4), the presence of a weak coupling between the two-dimensional layers stabilizes a three-dimensional magnetic order up to high temperatures. In a truly two-dimensional system however, thermal spin fluctuations melt long-range order at any finite temperature. Here, we measure the spin response of isolated layers of La(2)CuO(4) that are only one-unit-cell-thick. We show that coherent magnetic excitations, magnons, known from the bulk order, persist even in a single layer of La(2)CuO(4), with no evidence for more complex correlations such as resonating valence bond correlations. These magnons are, therefore, well described by spin-wave theory (SWT). On the other hand, we also observe a high-energy magnetic continuum in the isotropic magnetic response that is not well described by two-magnon SWT, or indeed any existing theories.

6.
Nat Mater ; 10(1): 39-44, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21131962

RESUMO

Spintronics has shown a remarkable and rapid development, for example from the initial discovery of giant magnetoresistance in spin valves to their ubiquity in hard-disk read heads in a relatively short time. However, the ability to fully harness electron spin as another degree of freedom in semiconductor devices has been slower to take off. One future avenue that may expand the spintronic technology base is to take advantage of the flexibility intrinsic to organic semiconductors (OSCs), where it is possible to engineer and control their electronic properties and tailor them to obtain new device concepts. Here we show that we can control the spin polarization of extracted charge carriers from an OSC by the inclusion of a thin interfacial layer of polar material. The electric dipole moment brought about by this layer shifts the OSC highest occupied molecular orbital with respect to the Fermi energy of the ferromagnetic contact. This approach allows us full control of the spin band appropriate for charge-carrier extraction, opening up new spintronic device concepts for future exploitation.

7.
Phys Rev Lett ; 108(14): 143401, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540791

RESUMO

We report on muonium (Mu) emission into vacuum following µ(+) implantation in mesoporous thin SiO(2) films. We obtain a yield of Mu into vacuum of (38±4)% at 250 K and (20±4)% at 100 K for 5 keV µ(+) implantation energy. From the implantation energy dependence of the Mu vacuum yield we determine the Mu diffusion constants in these films: D(Mu)(250 K)=(1.6±0.1)×10(-4) cm(2)/s and D(Mu)(100 K)=(4.2±0.5)×10(-5) cm(2)/s. Describing the diffusion process as quantum mechanical tunneling from pore to pore, we reproduce the measured temperature dependence ∼T(3/2) of the diffusion constant. We extract a potential barrier of (-0.3±0.1) eV which is consistent with our computed Mu work function in SiO(2) of [-0.3,-0.9] eV. The high Mu vacuum yield, even at low temperatures, represents an important step toward next generation Mu spectroscopy experiments.

8.
Phys Rev Lett ; 109(1): 017003, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23031126

RESUMO

We studied phase separation in the single-crystalline antiferromagnetic superconductor Rb(2)Fe(4)Se(5) (RFS) using a combination of scattering-type scanning near-field optical microscopy and low-energy muon spin rotation (LE-µSR). We demonstrate that the antiferromagnetic and superconducting phases segregate into nanometer-thick layers perpendicular to the iron-selenide planes, while the characteristic in-plane size of the metallic domains reaches 10 µm. By means of LE-µSR we further show that in a 40-nm thick surface layer the ordered antiferromagnetic moment is drastically reduced, while the volume fraction of the paramagnetic phase is significantly enhanced over its bulk value. Self-organization into a quasiregular heterostructure indicates an intimate connection between the modulated superconducting and antiferromagnetic phases.

9.
Nat Mater ; 9(4): 299-303, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20305642

RESUMO

Mn-doped GaAs is a ferromagnetic semiconductor, widely studied because of its possible application for spin-sensitive 'spintronics' devices. The material also attracts great interest in fundamental research regarding its evolution from a paramagnetic insulator to a ferromagnetic metal. The high sensitivity of its physical properties to preparation conditions and heat treatments and the strong doping and temperature dependencies of the magnetic anisotropy have generated a view in the research community that ferromagnetism in (Ga, Mn)As may be associated with unavoidable and intrinsic strong spatial inhomogeneity. Muon spin relaxation (muSR) probes magnetism, yielding unique information about the volume fraction of regions having static magnetic order, as well as the size and distribution of the ordered moments. By combining low-energy muSR, conductivity and a.c. and d.c. magnetization results obtained on high-quality thin-film specimens, we demonstrate here that (Ga, Mn)As shows a sharp onset of ferromagnetic order, developing homogeneously in the full volume fraction, in both insulating and metallic films. Smooth evolution of the ordered moment size across the insulator-metal phase boundary indicates strong ferromagnetic coupling between Mn moments that exists before the emergence of fully itinerant hole carriers.

10.
Phys Rev Lett ; 106(23): 237003, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21770540

RESUMO

We show, by means of low-energy muon-spin rotation measurements, that few-unit-cells thick La(2)CuO(4) layers synthesized digitally by molecular beam epitaxy are antiferromagnetically ordered. Below a thickness of about 5 CuO(2) layers the long-range ordered state breaks down, and a magnetic state appears with enhanced quantum fluctuations and a reduced spin stiffness. This magnetic state can exist in close proximity (few Å) to high-temperature superconducting layers, without transmitting supercurrents.

11.
Nat Mater ; 8(2): 109-14, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19029892

RESUMO

Electronic devices that use the spin degree of freedom hold unique prospects for future technology. The performance of these 'spintronic' devices relies heavily on the efficient transfer of spin polarization across different layers and interfaces. This complex transfer process depends on individual material properties and also, most importantly, on the structural and electronic properties of the interfaces between the different materials and defects that are common to real devices. Knowledge of these factors is especially important for the relatively new field of organic spintronics, where there is a severe lack of suitable experimental techniques that can yield depth-resolved information about the spin polarization of charge carriers within buried layers of real devices. Here, we present a new depth-resolved technique for measuring the spin polarization of current-injected electrons in an organic spin valve and find the temperature dependence of the measured spin diffusion length is correlated with the device magnetoresistance.

12.
Phys Rev Lett ; 103(21): 216601, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-20366057

RESUMO

The charge dynamics of hydrogenlike centers in semi-insulating GaAs have been studied by muon spin resonance in the presence of electric field and RF excitation. Electric-field-enhanced neutralization of deep electron and hole traps by track-induced hot carriers results in an increase of the excess electron's or hole's lifetimes. Similar processes may take place in semiconductor devices working at high voltages and/or under irradiation. As a consequence of the deep traps neutralization, the muonium (mu{+} + e{-}) center can capture a hole.

13.
Sci Adv ; 4(12): eaat3672, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30588488

RESUMO

Transition metal dichalcogenides (TMDs) are interesting for understanding the fundamental physics of two-dimensional (2D) materials as well as for applications to many emerging technologies, including spin electronics. Here, we report the discovery of long-range magnetic order below T M = 40 and 100 K in bulk semiconducting TMDs 2H-MoTe2 and 2H-MoSe2, respectively, by means of muon spin rotation (µSR), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The µSR measurements show the presence of large and homogeneous internal magnetic fields at low temperatures in both compounds indicative of long-range magnetic order. DFT calculations show that this magnetism is promoted by the presence of defects in the crystal. The STM measurements show that the vast majority of defects in these materials are metal vacancies and chalcogen-metal antisites, which are randomly distributed in the lattice at the subpercent level. DFT indicates that the antisite defects are magnetic with a magnetic moment in the range of 0.9 to 2.8 µB. Further, we find that the magnetic order stabilized in 2H-MoTe2 and 2H-MoSe2 is highly sensitive to hydrostatic pressure. These observations establish 2H-MoTe2 and 2H-MoSe2 as a new class of magnetic semiconductors and open a path to studying the interplay of 2D physics and magnetism in these interesting semiconductors.

14.
Nat Commun ; 9(1): 201, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321471

RESUMO

The original version of this article omitted the following from the Acknowledgements: "CAM and AL were supported by the NSF MRSEC program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). Additionally, this research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under 'Contract No. DE-AC02-05CH11231'." This has now been corrected in both the PDF and HTML versions of the article.

15.
J Phys Condens Matter ; 29(16): 164003, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28323635

RESUMO

Muon-spin rotation data collected at ambient pressure (p) and at p = 2.42 GPa in MnP were analyzed to check their consistency with various low- and high-pressure magnetic structures reported in the literature. Our analysis confirms that in MnP the low-temperature and low-pressure helimagnetic phase is characterised by an increased value of the average magnetic moment compared to the high-temperature ferromagnetic phase. An elliptical double-helical structure with a propagation vector [Formula: see text], an a-axis moment elongated by approximately 18% and an additional tilt of the rotation plane towards c-direction by [Formula: see text]-8° leads to a good agreement between the theory and the experiment. The analysis of the high-pressure µSR data reveals that the new magnetic order appearing for pressures exceeding 1.5 GPa can not be described by keeping the propagation vector [Formula: see text]. Even the extreme case-decoupling the double-helical structure into four individual helices-remains inconsistent with the experiment. It is shown that the high-pressure magnetic phase which is a precursor of superconductivity is an incommensurate helical state with [Formula: see text].

16.
Nat Commun ; 8(1): 1082, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057874

RESUMO

In its orthorhombic T d polymorph, MoTe2 is a type-II Weyl semimetal, where the Weyl fermions emerge at the boundary between electron and hole pockets. Non-saturating magnetoresistance and superconductivity were also observed in T d-MoTe2. Understanding the superconductivity in T d-MoTe2, which was proposed to be topologically non-trivial, is of eminent interest. Here, we report high-pressure muon-spin rotation experiments probing the temperature-dependent magnetic penetration depth in T d-MoTe2. A substantial increase of the superfluid density and a linear scaling with the superconducting critical temperature T c is observed under pressure. Moreover, the superconducting order parameter in T d-MoTe2 is determined to have 2-gap s-wave symmetry. We also exclude time-reversal symmetry breaking in the superconducting state with zero-field µSR experiments. Considering the strong suppression of T c in MoTe2 by disorder, we suggest that topologically non-trivial s +- state is more likely to be realized in MoTe2 than the topologically trivial s ++ state.

17.
J Phys Condens Matter ; 28(2): 026003, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26679223

RESUMO

We report the synthesis and characterization of a bulk form diluted magnetic semiconductor, (La(1-x)Ca(x))(Zn(1-y) Mn(y))AsO, with a layered crystal structure isostructural to that of the 1 1 1 1 type Fe-based high-temperature superconductor LaFeAsO and the antiferromagnetic LaMnAsO. With Ca and Mn codoping into LaZnAsO, the ferromagnetic ordering occurs below the Curie temperature T(c) ∼30 K. Taking advantage of the decoupled charge and spin doping, we investigate the influence of carrier concentration on the ferromagnetic ordering state. For a fixed Mn concentration of 10%, T(c) increases from 24 K to 30 K when the Ca concentration increases from 5% to 10%. Further increase of Ca concentration reduces both the coercive field and saturation moment. Muon spin relaxation measurements confirm the ferromagnetically ordered state, and clearly demonstrate that La(1-x)Ca(x))(Zn(1-y) Mn(y))AsO shares a common mechanism for the ferromagnetic exchange interaction with (Ga,Mn)As. Neutron scattering measurements show no structural transition in (La(0.90)Ca(0.10))(Zn(0.90)Mn(0.10)) AsO below 300 K.

18.
Nat Commun ; 6: 6041, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25608106

RESUMO

Superconductivity is a striking example of a quantum phenomenon in which electrons move coherently over macroscopic distances without scattering. The high-temperature superconducting oxides (cuprates) are the most studied class of superconductors, composed of two-dimensional CuO2 planes separated by other layers that control the electron concentration in the planes. A key unresolved issue in cuprates is the relationship between superconductivity and magnetism. Here we report a sharp phase boundary of static three-dimensional magnetic order in the electron-doped superconductor La(2-x)Ce(x)CuO(4-δ), where small changes in doping or depth from the surface switch the material from superconducting to magnetic. Using low-energy spin-polarized muons, we find that static magnetism disappears close to where superconductivity begins and well below the doping level at which dramatic changes in the transport properties are reported. These results indicate a higher degree of symmetry between the electron and hole-doped cuprates than previously thought.

19.
Nat Commun ; 6: 8863, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26548650

RESUMO

The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.

20.
Phys Rev Lett ; 84(21): 4958-61, 2000 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-10990841

RESUMO

The variation of a magnetic field as a function of depth beneath the surface of an YBa(2)Cu(3)O(7-delta) thin film in the Meissner state has been measured using low energy muons. The depth of implantation was varied from 20-150 nm by tuning the energy of the implanted muons from 3-30 keV. These are direct measurements of the penetration of a magnetic field beneath a superconducting surface which illustrate the power of low energy muons for near surface studies in superconductivity and magnetism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA