Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723112

RESUMO

Gene expression analysis is essential for understanding the mechanisms involved in plant development. Here, we developed M2WISH, a protocol based on MicroWave treatment for Wholemount mRNA In Situ Hybridization in Arabidopsis. By permeabilizing tissues without damaging cellular organization this protocol results in high and homogeneous hybridization yields that enable systematic analysis of gene expression dynamics. Moreover, when combined with cellular histochemical staining, M2WISH successfully provides a cellular resolution of gene expression. Thus, we demonstrate the robustness of M2WISH with 10 genes on roots, aerial meristems, leaves, and embryos in the seed. We applied M2WISH to study the spatial dynamics of WUSCHEL (WUS) and CLAVATA3 (CLV3) expression during in vitro meristematic conversion of roots into shoot apical meristems. Thus, we showed that shoot apical meristems could arise from two different types of root structures that differed by their CLV3 gene expression patterns. We constructed 3D cellular representations of WUS and CLV3 gene co-expression pattern and stressed the variability inherent to meristem conversion. Thus, this protocol generates a large amount of data on the localization of gene expression, which can be used to model complex systems.

2.
Plant J ; 103(2): 645-659, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32343459

RESUMO

In cultivated grasses, tillering, spike architecture and seed shattering represent major agronomical traits. In barley, maize and rice, the NOOT-BOP-COCH-LIKE (NBCL) genes play important roles in development, especially in ligule development, tillering and flower identity. However, compared with dicots, the role of grass NBCL genes is underinvestigated. To better understand the role of grass NBCLs and to overcome any effects of domestication that might conceal their original functions, we studied TILLING nbcl mutants in the non-domesticated grass Brachypodium distachyon. In B. distachyon, the NBCL genes BdUNICULME4 (CUL4) and BdLAXATUM-A (LAXA) are orthologous, respectively, to the barley HvUniculme4 and HvLaxatum-a, to the maize Zmtassels replace upper ears1 and Zmtassels replace upper ears2 and to the rice OsBLADE-ON-PETIOLE1 and OsBLADE-ON-PETIOLE2/3. In B. distachyon, our reverse genetics study shows that CUL4 is not essential for the establishment of the blade-sheath boundary but is necessary for the development of the ligule and auricles. We report that CUL4 also exerts a positive role in tillering and a negative role in spikelet meristem activity. On the other hand, we demonstrate that LAXA plays a negative role in tillering, positively participates in spikelet development and contributes to the control of floral organ number and identity. In this work, we functionally characterized two new NBCL genes in a context of non-domesticated grass and highlighted original roles for grass NBCL genes that are related to important agronomical traits.


Assuntos
Brachypodium/metabolismo , Proteínas de Plantas/metabolismo , Brachypodium/genética , Brachypodium/crescimento & desenvolvimento , Sequência Conservada/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Mutação , Filogenia , Proteínas de Plantas/genética , Genética Reversa , Transcriptoma
3.
FASEB J ; 34(12): 15675-15686, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33078886

RESUMO

Macrophages are a heterogeneous population of cells with an important role in innate immunity and tissue regeneration. Based on in vitro experiments, macrophages have been subdivided into five distinct subtypes named M1, M2a, M2b, M2c, and M2d, depending on the means of their activation and the cell surface markers they display. Whether all subtypes can be detected in vivo is still unclear. The identification of macrophages in vivo in the regenerating muscle could be used as a new diagnostic tool to monitor therapeutic strategies for tissue repair. The use of classical immunolabeling techniques is unable to discriminate between different M2 macrophages and a functional characterization of these macrophages is lacking. Using in situ hybridization coupled with hybridization-chain-reaction detection (HCR), we achieved the identification of M2d-like macrophages within regenerating muscle and applied this technique to understand the role of M2 macrophages in the regeneration of irradiated pig-muscle after adipose tissue stem cell treatment. Our work highlights the limits of immunolabeling and the usefulness of HCR analysis to provide valuable information for macrophage characterization.


Assuntos
Hibridização In Situ/métodos , Macrófagos/citologia , Tecido Adiposo/citologia , Animais , Imuno-Histoquímica/métodos , Células-Tronco/citologia , Suínos , Porco Miniatura
4.
J Exp Bot ; 69(18): 4379-4393, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29873769

RESUMO

Glutamine synthetase (GS) is central for ammonium assimilation and consists of cytosolic (GS1) and chloroplastic (GS2) isoenzymes. During plant ageing, GS2 protein decreases due to chloroplast degradation, and GS1 activity increases to support glutamine biosynthesis and N remobilization from senescing leaves. The role of the different Arabidopsis GS1 isoforms in nitrogen remobilization was examined using 15N tracing experiments. Only the gln1;1-gln1;2-gln1;3 triple-mutation affecting the three GLN1;1, GLN1;2, and GLN1;3 genes significantly reduced N remobilization, total seed yield, individual seed weight, harvest index, and vegetative biomass. The triple-mutant accumulated a large amount of ammonium that could not be assimilated by GS1. Alternative ammonium assimilation through asparagine biosynthesis was increased and was related to higher ASN2 asparagine synthetase transcript levels. The GS2 transcript, protein, and activity levels were also increased to compensate for the lack of GS1-related glutamine biosynthesis. Localization of the different GLN1 genes showed that they were all expressed in the phloem companion cells but in veins of different order. Our results demonstrate that glutamine biosynthesis for N-remobilization occurs in veins of all orders (major and minor) in leaves, it is mainly catalysed by the three major GS1 isoforms (GLN1;1, GLN1;2, and GLN1;3), and it is alternatively supported by AS2 in the veins and GS2 in the mesophyll cells.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glutamato-Amônia Ligase/genética , Nitrogênio/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glutamato-Amônia Ligase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Folhas de Planta/metabolismo , Sementes/crescimento & desenvolvimento
5.
Plant J ; 83(4): 732-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26119568

RESUMO

The evolution of plant reproductive strategies has led to a remarkable diversity of structures, especially within the flower, a structure characteristic of the angiosperms. In flowering plants, sexual reproduction depends notably on the development of the gynoecium that produces and protects the ovules. In Arabidopsis thaliana, ovule initiation is promoted by the concerted action of auxin with CUC1 (CUP-SHAPED COTYLEDON1) and CUC2, two genes that encode transcription factors of the NAC family (NAM/ATAF1,2/CUC). Here we highlight an additional role for CUC2 and CUC3 in Arabidopsis thaliana ovule separation. While CUC1 and CUC2 are broadly expressed in the medial tissue of the gynoecium, CUC2 and CUC3 are expressed in the placental tissue between developing ovules. Consistent with the partial overlap between CUC1, CUC2 and CUC3 expression patterns, we show that CUC proteins can physically interact, both in yeast cells and in planta. We found that the cuc2;cuc3 double mutant specifically harbours defects in ovule separation, producing fused seeds that share the seed coat, and suggesting that CUC2 and CUC3 promote ovule separation in a partially redundant manner. Functional analyses show that CUC transcription factors are also involved in ovule development in Cardamine hirsuta. Additionally we show a conserved expression pattern of CUC orthologues between ovule primordia in other phylogenetically distant species with different gynoecium architectures. Taken together these results suggest an ancient role for CUC transcription factors in ovule separation, and shed light on the conservation of mechanisms involved in the development of innovative structures.


Assuntos
Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cardamine/crescimento & desenvolvimento , Cardamine/metabolismo , Regulação da Expressão Gênica de Plantas , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Plant Physiol ; 169(3): 2166-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26417006

RESUMO

In the model plant Arabidopsis (Arabidopsis thaliana), endogenous and environmental signals acting on the shoot apical meristem cause acquisition of inflorescence meristem fate. This results in changed patterns of aerial development seen as the transition from making leaves to the production of flowers separated by elongated internodes. Two related BEL1-like homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), fulfill this transition. Loss of function of these genes impairs stem cell maintenance and blocks internode elongation and flowering. We show here that pny pnf apices misexpress lateral organ boundary genes BLADE-ON-PETIOLE1/2 (BOP1/2) and KNOTTED-LIKE FROM ARABIDOPSIS THALIANA6 (KNAT6) together with ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1). Inactivation of genes in this module fully rescues pny pnf defects. We further show that BOP1 directly activates ATH1, whereas activation of KNAT6 is indirect. The pny pnf restoration correlates with renewed accumulation of transcripts conferring floral meristem identity, including FD, SQUAMOSA PROMOTER-BINDING PROTEIN LIKE genes, LEAFY, and APETALA1. To gain insight into how this module blocks flowering, we analyzed the transcriptome of BOP1-overexpressing plants. Our data suggest a central role for the microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE-microRNA172 module in integrating stress signals conferred in part by promotion of jasmonic acid biosynthesis. These data reveal a potential mechanism by which repression of lateral organ boundary genes by PNY-PNF is essential for flowering.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Proteínas de Homeodomínio/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , MicroRNAs/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Repressoras/genética , Reprodução , Transdução de Sinais
7.
Plant Physiol ; 168(1): 192-204, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25755252

RESUMO

The oxidation of monolignols is a required step for lignin polymerization and deposition in cell walls. In dicots, both peroxidases and laccases are known to participate in this process. Here, we provide evidence that laccases are also involved in the lignification of Brachypodium distachyon, a model plant for temperate grasses. Transcript quantification data as well as in situ and immunolocalization experiments demonstrated that at least two laccases (LACCASE5 and LACCASE6) are present in lignifying tissues. A mutant with a misspliced LACCASE5 messenger RNA was identified in a targeting-induced local lesion in genome mutant collection. This mutant shows 10% decreased Klason lignin content and modification of the syringyl-to-guaiacyl units ratio. The amount of ferulic acid units ester linked to the mutant cell walls is increased by 40% when compared with control plants, while the amount of ferulic acid units ether linked to lignins is decreased. In addition, the mutant shows a higher saccharification efficiency. These results provide clear evidence that laccases are required for B. distachyon lignification and are promising targets to alleviate the recalcitrance of grass lignocelluloses.


Assuntos
Brachypodium/enzimologia , Brachypodium/fisiologia , Lacase/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/fisiologia , Alelos , Sequência de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Brachypodium/genética , Sequência Conservada , Ácidos Cumáricos/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Lacase/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Propionatos , Estrutura Terciária de Proteína , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
8.
Plant J ; 77(1): 71-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24147885

RESUMO

During cytokinesis a new crosswall is rapidly laid down. This process involves the formation at the cell equator of a tubulo-vesicular membrane network (TVN). This TVN evolves into a tubular network (TN) and a planar fenestrated sheet, which extends at its periphery before fusing to the mother cell wall. The role of cell wall polymers in cell plate assembly is poorly understood. We used specific stains and GFP-labelled cellulose synthases (CESAs) to show that cellulose, as well as three distinct CESAs, accumulated in the cell plate already at the TVN stage. This early presence suggests that cellulose is extruded into the tubular membrane structures of the TVN. Co-localisation studies using GFP-CESAs suggest the delivery of cellulose synthase complexes (CSCs) to the cell plate via phragmoplast-associated vesicles. In the more mature TN part of the cell plate, we observed delivery of GFP-CESA from doughnut-shaped organelles, presumably Golgi bodies. During the conversion of the TN into a planar fenestrated sheet, the GFP-CESA density diminished, whereas GFP-CESA levels remained high in the TVN zone at the periphery of the expanding cell plate. We observed retrieval of GFP-CESA in clathrin-containing structures from the central zone of the cell plate and from the plasma membrane of the mother cell, which may contribute to the recycling of CESAs to the peripheral growth zone of the cell plate. These observations, together with mutant phenotypes of cellulose-deficient mutants and pharmacological experiments, suggest a key role for cellulose synthesis already at early stages of cell plate assembly.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Glucosiltransferases/genética , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Parede Celular/ultraestrutura , Clatrina/metabolismo , Citocinese , Genes Reporter , Glucosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Isoenzimas , Microscopia Confocal , Microtúbulos/ultraestrutura , Modelos Biológicos , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Plântula/citologia , Plântula/genética , Plântula/metabolismo
9.
Plant Cell Physiol ; 56(7): 1374-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25907570

RESUMO

In oleaginous seeds, lipids--stored in organelles called oil bodies (OBs)--are degraded post-germinatively to provide carbon and energy for seedling growth. To date, little is known about how OB coat proteins, known as oleosins, control OB dynamics during seed germination. Here, we demonstrated that the sequential proteolysis of the five Arabidopsis thaliana oleosins OLE1-OLE5 begins just prior to lipid degradation. Several post-translational modifications (e.g. phosphorylation and ubiquination) of oleosins were concomitant with oleosin degradation. Phosphorylation occurred only on the minor OLE5 and on an 8 kDa proteolytic fragment of OLE2. A combination of immunochemical and proteomic approaches revealed ubiquitination of the four oleosins OLE1-OLE4 at the onset of OB mobilization. Ubiquitination topology was surprisingly complex. OLE1 and OLE2 were modified by three distinct and predominantly exclusive motifs: monoubiquitin, K48-linked diubiquitin (K48Ub(2)) and K63-linked diubiquitin. Ubiquitinated oleosins may be channeled towards specific degradation pathways according to ubiquitination type. One of these pathways was identified as the ubiquitin-proteasome pathway. A proteasome inhibitor (MG132) reduced oleosin degradation and induced cytosolic accumulation of K48Ub(2)-oleosin aggregates. These results indicate that K48Ub(2)-modified oleosins are selectively extracted from OB coat and degraded by the proteasome. Proteasome inhibition also reduced lipid hydrolysis, providing in vivo evidence that oleosin degradation is required for lipid mobilization.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gotículas Lipídicas/metabolismo , Plântula/metabolismo , Ubiquitina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Inibidores de Cisteína Proteinase/farmacologia , Germinação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Leupeptinas/farmacologia , Microscopia Confocal , Fosforilação , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Proteômica/métodos , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Fatores de Tempo , Ubiquitinação
10.
Nature ; 461(7267): 1135-8, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19847267

RESUMO

Sex determination in plants leads to the development of unisexual flowers from an originally bisexual floral meristem. This mechanism results in the enhancement of outcrossing and promotes genetic variability, the consequences of which are advantageous to the evolution of a species. In melon, sexual forms are controlled by identity of the alleles at the andromonoecious (a) and gynoecious (g) loci. We previously showed that the a gene encodes an ethylene biosynthesis enzyme, CmACS-7, that represses stamen development in female flowers. Here we show that the transition from male to female flowers in gynoecious lines results from epigenetic changes in the promoter of a transcription factor, CmWIP1. This natural and heritable epigenetic change resulted from the insertion of a transposon, which is required for initiation and maintenance of the spreading of DNA methylation to the CmWIP1 promoter. Expression of CmWIP1 leads to carpel abortion, resulting in the development of unisexual male flowers. Moreover, we show that CmWIP1 indirectly represses the expression of the andromonoecious gene, CmACS-7, to allow stamen development. Together our data indicate a model in which CmACS-7 and CmWIP1 interact to control the development of male, female and hermaphrodite flowers in melon.


Assuntos
Cucurbitaceae/genética , Elementos de DNA Transponíveis/genética , Epigênese Genética/genética , Processos de Determinação Sexual , Alelos , Cucurbitaceae/enzimologia , Cucurbitaceae/fisiologia , Metilação de DNA , Etilenos/biossíntese , Flores/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Liases/metabolismo , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
11.
Plant J ; 76(2): 223-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23855996

RESUMO

Flower architecture mutants provide a unique opportunity to address the genetic origin of flower diversity. Here we study a naturally occurring floral dimorphism in Nigella damascena (Ranunculaceae), involving replacement of the petals by numerous sepal-like and chimeric sepal/stamen organs. We performed a comparative study of floral morphology and floral development, and characterized the expression of APETALA3 and PISTILLATA homologs in both morphs. Segregation analyses and gene silencing were used to determine the involvement of an APETALA3 paralog (NdAP3-3) in the floral dimorphism. We demonstrate that the complex floral dimorphism is controlled by a single locus, which perfectly co-segregates with the NdAP3-3 gene. This gene is not expressed in the apetalous morph and exhibits a particular expression dynamic during early floral development in the petalous morph. NdAP3-3 silencing in petalous plants perfectly phenocopies the apetalous morph. Our results show that NdAP3-3 is fully responsible for the complex N. damascena floral dimorphism, suggesting that it plays a role not only in petal identity but also in meristem patterning, possibly through regulation of perianth organ number and the perianth/stamen boundary.


Assuntos
Flores/anatomia & histologia , Proteínas de Domínio MADS/metabolismo , Meristema/crescimento & desenvolvimento , Nigella damascena/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Domínio MADS/genética , Meristema/genética , Microscopia Eletrônica de Varredura , Nigella damascena/crescimento & desenvolvimento , Proteínas de Plantas/genética
12.
Plant J ; 76(5): 811-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24112720

RESUMO

In order to obtain insights into the regulatory pathways controlling phloem development, we characterized three genes encoding membrane proteins from the G sub-family of ABC transporters (ABCG9, ABCG11 and ABCG14), whose expression in the phloem has been confirmed. Mutations in the genes encoding these dimerizing 'half transporters' are semi-dominant and result in vascular patterning defects in cotyledons and the floral stem. Co-immunoprecipitation and bimolecular fluorescence complementation experiments demonstrated that these proteins dimerize, either by flexible pairing (ABCG11 and ABCG9) or by forming strict heterodimers (ABCG14). In addition, metabolome analyses and measurement of sterol ester contents in the mutants suggested that ABCG9, ABCG11 and ABCG14 are involved in lipid/sterol homeostasis regulation. Our results show that these three ABCG genes are required for proper vascular development in Arabidopsis thaliana.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Floema/crescimento & desenvolvimento , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Homeostase , Metaboloma , Mutação , Floema/genética , Fitosteróis/química , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Multimerização Proteica
13.
Plant Cell Physiol ; 55(9): 1646-59, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25008975

RESUMO

Among secondary metabolites, flavonoids are particularly important for the plant life cycle and could be beneficial for human health. The study of Arabidopsis thaliana transparent testa mutants showed that seed flavonoids are important for environmental adaptation, reactive oxygen species homeostasis, dormancy and longevity. Compared with Arabidopsis and maize (Zea mays L.), far less research has been conducted on rice (Oryza sativa L.) particularly for cultivars with non-pigmented seeds. In this study, we describe the localization, nature and relative abundance of flavonoids in mature and germinated non-pigmented Nipponbare seeds using a combination of confocal microscopy, mass spectrometry and gene expression analysis. The mature seed exclusively accumulates flavones mostly in the embryo and to a lesser extent in the pericarp/testa. Due to the variety of flavone conjugation patterns, 21 different flavones were identified, including sulfated flavones never mentioned before in cereals. Schaftoside (apigenin-6-C-glucoside-8-C-arabinoside) and its two isomers represent nearly 50% of all rice seed flavones and are the only flavonoids accumulated in the pericarp/testa seed compartment. These 21 conjugated flavones showed a very stable profile during rice seed germination sensu stricto, while expression of key flavone synthesis genes strongly increases before the completion of germination. We discuss the potential roles of these rice seed flavones in a seed biology context.


Assuntos
Flavonas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Sementes/metabolismo , Cromatografia Líquida , Flavonas/química , Flavonas/isolamento & purificação , Germinação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/química , Oryza/genética , Oryza/ultraestrutura , RNA de Plantas/genética , Sementes/química , Sementes/genética , Sementes/ultraestrutura , Espectrometria de Massas em Tandem , Água/fisiologia
14.
Development ; 138(21): 4733-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965608

RESUMO

Plant leaves and flowers are positioned along the stem in a regular pattern. This pattern, which is referred to as phyllotaxis, is generated through the precise emergence of lateral organs and is controlled by gradients of the plant hormone auxin. This pattern is actively maintained during stem growth through controlled cell proliferation and elongation. The formation of new organs is known to depend on changes in cell wall chemistry, in particular the demethylesterification of homogalacturonans, one of the main pectic components. Here we report a dual function for the homeodomain transcription factor BELLRINGER (BLR) in the establishment and maintenance of the phyllotactic pattern in Arabidopsis. BLR is required for the establishment of normal phyllotaxis through the exclusion of pectin methylesterase PME5 expression from the meristem dome and for the maintenance of phyllotaxis through the activation of PME5 in the elongating stem. These results provide new insights into the role of pectin demethylesterification in organ initiation and cell elongation and identify an important component of the regulation mechanism involved.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Regulação da Expressão Gênica de Plantas , Morfogênese/fisiologia , Proteínas Repressoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Parede Celular/metabolismo , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação Enzimológica da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/ultraestrutura , Fenótipo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética
15.
Plant Physiol ; 160(3): 1204-17, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22984124

RESUMO

Monolignol glucosides are thought to be implicated in the lignin biosynthesis pathway as storage and/or transportation forms of cinnamyl alcohols between the cytosol and the lignifying cell walls. The hydrolysis of these monolignol glucosides would involve ß-glucosidase activities. In Arabidopsis (Arabidopsis thaliana), in vitro studies have shown the affinity of ß-GLUCOSIDASE45 (BGLU45) and BGLU46 for monolignol glucosides. BGLU45 and BGLU46 genes are expressed in stems. Immunolocalization experiments showed that BGLU45 and BGLU46 proteins are mainly located in the interfascicular fibers and in the protoxylem, respectively. Knockout mutants for BGLU45 or BGLU46 do not have a lignin-deficient phenotype. Coniferin and syringin could be detected by ultra-performance liquid chromatography-mass spectrometry in Arabidopsis stems. Stems from BGLU45 and BGLU46 mutant lines displayed a significant increase in coniferin content without any change in coniferyl alcohol, whereas no change in syringin content was observed. Other glucosylated compounds of the phenylpropanoid pathway were also deregulated in these mutants, but to a lower extent. By contrast, BGLU47, which is closely related to BGLU45 and BGLU46, is not implicated in either the general phenylpropanoid pathway or in the lignification of stems and roots. These results confirm that the major in vivo substrate of BGLU45 and BGLU46 is coniferin and suggest that monolignol glucosides are the storage form of monolignols in Arabidopsis, but not the direct precursors of lignin.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Celulases/metabolismo , Lignina/metabolismo , Caules de Planta/enzimologia , Proteínas de Arabidopsis/genética , Celulases/genética , Cinamatos/metabolismo , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Glucosídeos/metabolismo , Metaboloma/genética , Mutagênese Insercional/genética , Mutação/genética , Especificidade de Órgãos/genética , Fenilpropionatos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Caules de Planta/genética , Transporte Proteico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Plant Cell ; 22(2): 364-75, 2010 02.
Artigo em Inglês | MEDLINE | ID: mdl-20145257

RESUMO

Very-long-chain fatty acids (VLCFAs) are essential for many aspects of plant development and necessary for the synthesis of seed storage triacylglycerols, epicuticular waxes, and sphingolipids. Identification of the acetyl-CoA carboxylase PASTICCINO3 and the 3-hydroxy acyl-CoA dehydratase PASTICCINO2 revealed that VLCFAs are important for cell proliferation and tissue patterning. Here, we show that the immunophilin PASTICCINO1 (PAS1) is also required for VLCFA synthesis. Impairment of PAS1 function results in reduction of VLCFA levels that particularly affects the composition of sphingolipids, known to be important for cell polarity in animals. Moreover, PAS1 associates with several enzymes of the VLCFA elongase complex in the endoplasmic reticulum. The pas1 mutants are deficient in lateral root formation and are characterized by an abnormal patterning of the embryo apex, which leads to defective cotyledon organogenesis. Our data indicate that in both tissues, defective organogenesis is associated with the mistargeting of the auxin efflux carrier PIN FORMED1 in specific cells, resulting in local alteration of polar auxin distribution. Furthermore, we show that exogenous VLCFAs rescue lateral root organogenesis and polar auxin distribution, indicating their direct involvement in these processes. Based on these data, we propose that PAS1 acts as a molecular scaffold for the fatty acid elongase complex in the endoplasmic reticulum and that the resulting VLCFAs are required for polar auxin transport and tissue patterning during plant development.


Assuntos
Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/embriologia , Arabidopsis/crescimento & desenvolvimento
17.
Nat Plants ; 9(10): 1675-1687, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653338

RESUMO

Sex determination evolved to control the development of unisexual flowers. In agriculture, it conditions how plants are cultivated and bred. We investigated how female flowers develop in monoecious cucurbits. We discovered in melon, Cucumis melo, a mechanism in which ethylene produced in the carpel is perceived in the stamen primordia through spatially differentially expressed ethylene receptors. Subsequently, the CmEIN3/CmEIL1 ethylene signalling module, in stamen primordia, activates the expression of CmHB40, a transcription factor that downregulates genes required for stamen development and upregulates genes associated with organ senescence. Investigation of melon genetic biodiversity revealed a haplotype, originating in Africa, altered in EIN3/EIL1 binding to CmHB40 promoter and associated with bisexual flower development. In contrast to other bisexual mutants in cucurbits, CmHB40 mutations do not alter fruit shape. By disentangling fruit shape and sex-determination pathways, our work opens up new avenues in plant breeding.


Assuntos
Cucurbitaceae , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Etilenos/metabolismo , Cucurbitaceae/genética , Flores , Regulação da Expressão Gênica de Plantas
18.
Plants (Basel) ; 11(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35448796

RESUMO

Plant somatic embryogenesis (SE) is a natural process of vegetative propagation. It can be induced in tissue cultures to investigate developmental transitions, to create transgenic or edited lines, or to multiply valuable crops. We studied the induction of SE in the scutellum of monocots with Brachypodium distachyon as a model system. Towards the in-depth analysis of SE initiation, we determined the earliest stages at which somatic scutellar cells acquired an embryogenic fate, then switched to a morphogenetic mode in a regeneration sequence involving treatments with exogenous hormones: first an auxin (2,4-D) then a cytokinin (kinetin). Our observations indicated that secondary somatic embryos could already develop in the proliferative calli derived from immature zygotic embryo tissues within one week from the start of in vitro culture. Cell states and tissue identity were deduced from detailed histological examination, and in situ hybridization was performed to map the expression of key developmental genes. The fast SE induction method we describe here facilitates the mechanistic study of the processes involved and may significantly shorten the production of transgenic or gene-edited plants.

19.
Biomedicines ; 10(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203694

RESUMO

Bone is a very complex tissue that is constantly changing throughout the lifespan. The precise mechanism of bone regeneration remains poorly understood. Large bone defects can be caused by gunshot injury, trauma, accidents, congenital anomalies and tissue resection due to cancer. Therefore, understanding bone homeostasis and regeneration has considerable clinical and scientific importance in the development of bone therapy. Macrophages are well known innate immune cells secreting different combinations of cytokines and their role in bone regeneration during bone healing is essential. Here, we present a method to identify mRNA transcripts in cryosections of non-decalcified rat bone using in situ hybridization and hybridization chain reaction to explore gene expression in situ for better understanding the gene expression of the bone tissues.

20.
Curr Biol ; 32(11): 2390-2401.e4, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525245

RESUMO

Shapes of vegetables and fruits are the result of adaptive evolution and human selection. Modules controlling organ shape have been identified. However, little is known about signals coordinating organ development and shape. Here, we describe the characterization of a melon mutation rf1, leading to round fruit. Histological analysis of rf1 flower and fruits revealed fruit shape is determined at flower stage 8, after sex determination and before flower fertilization. Using positional cloning, we identified the causal gene as the monoecy sex determination gene CmACS7, and survey of melon germplasms showed strong association between fruit shape and sexual types. We show that CmACS7-mediated ethylene production in carpel primordia enhances cell expansion and represses cell division, leading to elongated fruit. Cell size is known to rise as a result of endoreduplication. At stage 8 and anthesis, we found no variation in ploidy levels between female and hermaphrodite flowers, ruling out endoreduplication as a factor in fruit shape determination. To pinpoint the gene networks controlling elongated versus round fruit phenotype, we analyzed the transcriptomes of laser capture microdissected carpels of wild-type and rf1 mutant. These high-resolution spatiotemporal gene expression dynamics revealed the implication of two regulatory modules. The first module implicates E2F-DP transcription factors, controlling cell elongation versus cell division. The second module implicates OVATE- and TRM5-related proteins, controlling cell division patterns. Our finding highlights the dual role of ethylene in the inhibition of the stamina development and the elongation of ovary and fruit in cucurbits.


Assuntos
Cucurbitaceae , Frutas , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Etilenos/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA