Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 45(5): 1135-1147, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851914

RESUMO

Tumor-infiltrating regulatory T lymphocytes (Treg) can suppress effector T cells specific for tumor antigens. Deeper molecular definitions of tumor-infiltrating-lymphocytes could thus offer therapeutic opportunities. Transcriptomes of T helper 1 (Th1), Th17, and Treg cells infiltrating colorectal or non-small-cell lung cancers were compared to transcriptomes of the same subsets from normal tissues and validated at the single-cell level. We found that tumor-infiltrating Treg cells were highly suppressive, upregulated several immune-checkpoints, and expressed on the cell surfaces specific signature molecules such as interleukin-1 receptor 2 (IL1R2), programmed death (PD)-1 Ligand1, PD-1 Ligand2, and CCR8 chemokine, which were not previously described on Treg cells. Remarkably, high expression in whole-tumor samples of Treg cell signature genes, such as LAYN, MAGEH1, or CCR8, correlated with poor prognosis. Our findings provide insights into the molecular identity and functions of human tumor-infiltrating Treg cells and define potential targets for tumor immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Separação Celular , Neoplasias Colorretais/mortalidade , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Prognóstico , Transcriptoma
2.
Nat Immunol ; 12(8): 796-803, 2011 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-21706005

RESUMO

MicroRNAs are small noncoding RNAs that regulate gene expression post-transcriptionally. Here we applied microRNA profiling to 17 human lymphocyte subsets to identify microRNA signatures that were distinct among various subsets and different from those of mouse lymphocytes. One of the signature microRNAs of naive CD4+ T cells, miR-125b, regulated the expression of genes encoding molecules involved in T cell differentiation, including IFNG, IL2RB, IL10RA and PRDM1. The expression of synthetic miR-125b and lentiviral vectors encoding the precursor to miR-125b in naive lymphocytes inhibited differentiation to effector cells. Our data provide an 'atlas' of microRNA expression in human lymphocytes, define subset-specific signatures and their target genes and indicate that the naive state of T cells is enforced by microRNA.


Assuntos
Linfócitos T CD4-Positivos/imunologia , MicroRNAs/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Biologia Computacional/métodos , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Eur J Immunol ; 49(1): 96-111, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431161

RESUMO

Whether human IL-10-producing regulatory T cells ("Tr1") represent a distinct differentiation lineage or an unstable activation stage remains a key unsolved issue. Here, we report that Eomesodermin (Eomes) acted as a lineage-defining transcription factor in human IFN-γ/IL-10 coproducing Tr1-like cells. In vivo occurring Tr1-like cells expressed Eomes, and were clearly distinct from all other CD4+ T-cell subsets, including conventional cytotoxic CD4+ T cells. They expressed Granzyme (Gzm) K, but had lost CD40L and IL-7R expression. Eomes antagonized the Th17 fate, and directly controlled IFN-γ and GzmK expression. However, Eomes binding to the IL-10 promoter was not detectable in human CD4+ T cells, presumably because critical Tbox binding sites of the mouse were not conserved. A precommitment to a Tr1-like fate, i.e. concominant induction of Eomes, GzmK, and IFN-γ, was promoted by IL-4 and IL-12-secreting myeloid dendritic cells. Consistently, Th1 effector memory cells contained precommitted Eomes+ GzmK+ T cells. Stimulation with T-cell receptor (TCR) agonists and IL-27 promoted the generation of Tr1-like effector cells by inducing switching from CD40L to IL-10. Importantly, CD4+ Eomes+ T-cell subsets were present in lymphoid and nonlymphoid tissues, and their frequencies varied systemically in patients with inflammatory bowel disease and graft-versus-host disease. We propose that Eomes+ Tr1-like cells are effector cells of a unique GzmK-expressing CD4+ T-cell subset.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Doenças Inflamatórias Intestinais/imunologia , Proteínas com Domínio T/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Regulação da Expressão Gênica , Granzimas/metabolismo , Humanos , Memória Imunológica , Interferon gama/metabolismo , Interleucina-10/metabolismo , Camundongos , Proteínas com Domínio T/genética
4.
Liver Int ; 39(11): 2124-2135, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31033124

RESUMO

BACKGROUND AND AIMS: Primary biliary cholangitis is an autoimmune biliary disease characterized by injury of bile ducts, eventually leading to cirrhosis and death. In most cases, anti-mitochondrial antibodies and persistently elevated serum alkaline phosphatase are the basis for the serological diagnosis. Anti-nuclear antibodies are also useful and may indicate a more aggressive diseases course. In patients in which anti-mitochondrial antibodies are not detected, an accurate diagnosis requires liver histology. This study aims at identifying specific biomarkers for the serological diagnosis of primary biliary cholangitis. METHODS: Sera from patients affected by primary biliary cholangitis, primary sclerosing cholangitis, hepatitis C virus (with and without cryoglobulinemia), hepatocarcinoma and healthy donors were tested on a protein array representing 1658 human proteins. The most reactive autoantigens were confirmed by DELFIA analysis on expanded cohorts of the same mentioned serum classes, and on autoimmune hepatitis sera, using anti-PDC-E2 as reference biomarker. RESULTS: Two autoantigens, SPATA31A3 and GARP, showed high reactivity with primary biliary cholangitis sera, containing or not anti-mitochondrial antibodies. Their combination with PDC-E2 allowed to discriminate primary biliary cholangitis from all tested control classes with high sensitivity and specificity. We found that GARP expression is upregulated upon exposure to biliary salts in human cholangiocytes, an event involving EGFR and insulin pathways. GARP expression was also detected in biliary duct cells of PBC patients. CONCLUSIONS: This study highlighted SPATA31A3 and GARP as new biomarkers for primary biliary cholangitis and unravelled molecular stimuli underlying GARP expression in human cholangiocytes.


Assuntos
Autoanticorpos/sangue , Autoantígenos/imunologia , Cirrose Hepática Biliar/diagnóstico , Proteínas de Membrana/imunologia , Mitocôndrias/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Feminino , Humanos , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
J Allergy Clin Immunol ; 142(5): 1537-1547.e8, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29369775

RESUMO

BACKGROUND: IL-10 is an anti-inflammatory cytokine required for intestinal immune homeostasis. It mediates suppression of T-cell responses by type 1 regulatory T (TR1) cells but is also produced by CD25+ regulatory T (Treg) cells. OBJECTIVE: We aimed to identify and characterize human intestinal TR1 cells and to investigate whether they are a relevant cellular source of IL-10 in patients with inflammatory bowel diseases (IBDs). METHODS: CD4+ T cells isolated from the intestinal lamina propria of human subjects and mice were analyzed for phenotype, cytokine production, and suppressive capacities. Intracellular IL-10 expression by CD4+ T-cell subsets in the inflamed guts of patients with IBD (Crohn disease or ulcerative colitis) was compared with that in cells from noninflamed control subjects. Finally, the effects of proinflammatory cytokines on T-cell IL-10 expression were analyzed, and IL-1ß and IL-23 responsiveness was assessed. RESULTS: Intestinal TR1 cells could be identified by coexpression of CCR5 and programmed cell death protein 1 (PD-1) in human subjects and mice. CCR5+PD-1+ TR1 cells expressed IFN-γ and efficiently suppressed T-cell proliferation and transfer colitis. Intestinal IFN-γ+ TR1 cells, but not IL-7 receptor-positive TH cells or CD25+ Treg cells, showed lower IL-10 expression in patients with IBDs. TR1 cells were responsive to IL-23, and IFN-γ+ TR1 cells downregulated IL-10 with IL-1ß and IL-23. Conversely, CD25+ Treg cells expressed higher levels of IL-1 receptor but showed stable IL-10 expression. CONCLUSIONS: We provide the first ex vivo characterization of human intestinal TR1 cells. Selective downregulation of IL-10 by IFN-γ+ TR1 cells in response to proinflammatory cytokines is likely to drive excessive intestinal inflammation in patients with IBDs.


Assuntos
Citocinas/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores CCR5/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Animais , Células Cultivadas , Neoplasias do Colo/imunologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Adulto Jovem
6.
J Biol Chem ; 292(7): 2903-2915, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28077577

RESUMO

Upon T cell receptor stimulation, CD4+ T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4+ T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4+ T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4+ T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response.


Assuntos
Doenças Autoimunes/genética , Linfócitos T CD4-Positivos/citologia , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , Subpopulações de Linfócitos T , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Etanercepte/uso terapêutico , Humanos , MicroRNAs/sangue , Psoríase/sangue , Psoríase/tratamento farmacológico , Psoríase/genética
7.
J Allergy Clin Immunol ; 140(3): 797-808, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28237728

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that is caused by autoreactive T cells and associated with viral infections. However, the phenotype of pathogenic T cells in peripheral blood remains to be defined, and how viruses promote MS is debated. OBJECTIVE: We aimed to identify and characterize potentially pathogenic autoreactive T cells, as well as protective antiviral T cells, in patients with MS. METHODS: We analyzed CD4+ helper T-cell subsets from peripheral blood or cerebrospinal fluid for cytokine production, gene expression, plasticity, homing potentials, and their reactivity to self-antigens and viral antigens in healthy subjects and patients with MS. Moreover, we monitored their frequencies in untreated and fingolimod- or natalizumab-treated patients with MS. RESULTS: TH1/TH17 central memory (TH1/TH17CM) cells were selectively increased in peripheral blood of patients with relapsing-remitting MS with a high disease score. TH1/TH17CM cells were closely related to conventional TH17 cells but had more pathogenic features. In particular, they could shuttle between lymph nodes and the CNS and produced encephalitogenic cytokines. The cerebrospinal fluid of patients with active MS was enriched for CXCL10 and contained mainly CXCR3-expressing TH1 and TH1/TH17 subsets. However, while TH1 cells responded consistently to viruses, TH1/TH17CM cells reacted strongly with John Cunningham virus in healthy subjects but responded instead to myelin-derived self-antigens in patients with MS. Fingolimod and natalizumab therapies efficiently targeted autoreactive TH1/TH17CM cells but also blocked virus-specific TH1 cells. CONCLUSIONS: We propose that autoreactive TH1/TH17CM cells expand in patients with MS and promote relapses after bystander recruitment to the CNS, whereas TH1 cells perform immune surveillance. Thus the selective targeting of TH1/TH17 cells could inhibit relapses without causing John Cunningham virus-dependent progressive multifocal encephalomyelitis.


Assuntos
Antígenos Virais/imunologia , Autoantígenos/imunologia , Vírus JC/imunologia , Esclerose Múltipla/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adulto , Citocinas/líquido cefalorraquidiano , Citocinas/imunologia , Feminino , Cloridrato de Fingolimode/uso terapêutico , Expressão Gênica , Humanos , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Natalizumab/uso terapêutico
8.
J Cell Biochem ; 118(3): 570-584, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27632571

RESUMO

Recent studies suggest that human tumors are generated from cancer cells with stem cell (SC) properties. Spontaneously occurring cancers in dogs contain a diversity of cells that like for human tumors suggest that certain canine tumors are also generated from cancer stem cells (CSCs). CSCs, like normal SCs, have the capacity for self-renewal as mammospheres in suspension cultures. To understand how cells with SC properties contribute to canine mammary gland tumor development and progression, comparative analysis between normal SCs and CSCs, obtained from the same individual, is essential. We have utilized the property of sphere formation to develop culture conditions for propagating stem/progenitor cells from canine normal and tumor tissue. We show that cells from dissociated mammospheres retain sphere reformation capacity for several serial passages and have the capacity to generate organoid structures ex situ. Utilizing various culture conditions for passaging SCs and CSCs, fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) were found to positively or negatively regulate mammosphere regeneration, organoid formation, and multi-lineage differentiation potential. The response of FGF2 and EGF on SCs and CSCs was different, with increased FGF2 and EGF self-renewal promoted in SCs and repressed in CSCs. Our protocol for propagating SCs from normal and tumor canine breast tissue will provide new opportunities in comparative mammary gland stem cell analysis between species and anticancer treatment and therapies for dogs. J. Cell. Biochem. 118: 570-584, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neoplasias Mamárias Animais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Organoides/metabolismo , Animais , Cães , Feminino , Neoplasias Mamárias Animais/patologia , Células-Tronco Neoplásicas/patologia , Organoides/patologia , Células Tumorais Cultivadas
9.
Eur J Immunol ; 46(7): 1622-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129615

RESUMO

IL-10 is an anti-inflammatory cytokine that inhibits maturation and cytokine production of dendritic cells (DCs). Although mature DCs have the unique capacity to prime CD8(+) CTL, IL-10 can promote CTL responses. To understand these paradoxic findings, we analyzed the role of IL-10 produced by human APC subsets in T-cell responses. IL-10 production was restricted to CD1c(+) DCs and CD14(+) monocytes. Interestingly, it was differentially regulated, since R848 induced IL-10 in DCs, but inhibited IL-10 in monocytes. Autocrine IL-10 had only a weak inhibitory effect on DC maturation, cytokine production, and CTL priming with high-affinity peptides. Nevertheless, it completely blocked cross-priming and priming with low-affinity peptides of a self/tumor-antigen. IL-10 also inhibited CD1c(+) DC-induced CD4(+) T-cell priming and enhanced Foxp3 induction, but was insufficient to induce T-cell IL-10 production. CD1c(+) DC-derived IL-10 had also no effect on DC-induced secondary expansions of memory CTL. However, IL-15-driven, TCR-independent proliferation of memory CTL was enhanced by IL-10. We conclude that DC-derived IL-10 selects high-affinity CTL upon priming. Moreover, IL-10 preserves established CTL memory by enhancing IL-15-dependent homeostatic proliferation. These combined effects on CTL priming and memory maintenance provide a plausible mechanism how IL-10 promotes CTL responses in humans.


Assuntos
Antígenos CD1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicoproteínas/metabolismo , Memória Imunológica/imunologia , Interleucina-10/metabolismo , Ativação Linfocitária/imunologia , Apresentação de Antígeno/imunologia , Comunicação Autócrina/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Apresentação Cruzada/imunologia , Citocinas/metabolismo , Antígenos HLA-A/imunologia , Antígenos HLA-A/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Monócitos/imunologia , Monócitos/metabolismo
10.
J Immunol ; 195(8): 3617-27, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26378072

RESUMO

IL-17 production defines Th17 cells, which orchestrate immune responses and autoimmune diseases. Human Th17 cells can be efficiently generated with appropriate cytokines from precommitted precursors, but the requirements of uncommitted T cells are still ill defined. In standard human Th17 cultures, IL-17 production was restricted to CCR6(+)CD45RA(+) T cells, which expressed CD95 and produced IL-17 ex vivo, identifying them as Th17 memory stem cells. Uncommitted naive CD4(+) T cells upregulated CCR6, RORC2, and IL-23R expression with Th17-promoting cytokines but in addition required sustained TCR stimulation, late mammalian target of rapamycin (mTOR) activity, and HIF-1α to produce IL-17. However, in standard high-density cultures, nutrients like glucose and amino acids became progressively limiting, and mTOR activity was consequently not sustained, despite ongoing TCR stimulation and T cell proliferation. Sustained, nutrient-dependent mTOR activity also induced spontaneous IL-22 and IFN-γ production, but these cytokines had also unique metabolic requirements. Thus, glucose promoted IL-12-independent Th1 differentiation, whereas aromatic amino acid-derived AHR ligands were selectively required for IL-22 production. The identification of Th17 memory stem cells and the stimulation requirements for induced human Th17/22 differentiation have important implications for T cell biology and for therapies targeting the mTOR pathway.


Assuntos
Diferenciação Celular/imunologia , Memória Imunológica/fisiologia , Interferon gama/imunologia , Interleucinas/imunologia , Transdução de Sinais/imunologia , Células Th17/imunologia , Feminino , Humanos , Masculino , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Receptores CCR6/imunologia , Receptores de Interleucina/imunologia , Células Th17/citologia , Interleucina 22
11.
J Immunol ; 193(7): 3322-31, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172491

RESUMO

IL-21 promotes Th17 differentiation, and Th17 cells that upregulate T-bet, IFN-γ, and GM-CSF drive experimental autoimmune diseases in mice. Anti-IL-21 treatment of autoimmune patients is therefore a therapeutic option, but the role of IL-21 in human T cell differentiation is incompletely understood. IL-21 was produced at high levels by human CD4(+) central memory T cells, suggesting that it is associated with early T cell differentiation. Consistently, it was inhibited by forced expression of T-bet or RORC2, the lineage-defining transcription factors of Th1 and Th17 effector cells, respectively. Although IL-21 was efficiently induced by IL-12 in naive CD4(+) T cells, it inhibited the generation of Th1 effector cells in a negative feedback loop. IL-21 was also induced by IL-6 and promoted Th17 differentiation, but it was not absolutely required. Importantly, however, IL-21 promoted IL-10 secretion but inhibited IFN-γ and GM-CSF production in developing Th17 cells, and consequently prevented the generation of polyfunctional Th1/17 effector cells. Moreover, in Th17 memory cells, IL-21 selectively inhibited T-bet upregulation and GM-CSF production. In summary, IL-21 is a central memory T cell-associated cytokine that promotes Th17 differentiation and IL-10 production, but inhibits the generation of potentially pathogenic Th1/17 effector cells. These findings shed new light on the role of IL-21 in T cell differentiation, and have relevant implications for anti-IL-21 therapy of autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Interleucinas/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Doenças Autoimunes/patologia , Doenças Autoimunes/terapia , Feminino , Humanos , Interleucina-10/imunologia , Interleucina-12/imunologia , Interleucina-6/imunologia , Masculino , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Proteínas com Domínio T/imunologia , Células Th1/patologia , Células Th17/patologia , Regulação para Cima/imunologia
12.
Proteomics ; 15(21): 3644-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26332097

RESUMO

The differentiation of human CD4(+) T cells into T helper cell subtypes and regulatory T cells is crucial to the immune response. Among subtypes, Th1 cells are dominant, representing approximately 50% of all lymphocytes. Thus far, most global proteomic studies have used only partially purified T helper cell subpopulations and/or have employed artificial protocols for inducing specific T helper cell subtypes and/or used gel-based approaches. These studies have shed light on molecular details of certain aspects of the proteome; nevertheless a global analysis of high purity primary naïve and Th1 cells by LC-MS/MS is required to provide a reference dataset for proteome-based T cell subtype characterization. The utilization of highly purified Th1 cells for a global proteome assessment and the bioinformatic comparison to naïve cells reveals changes in cell metabolism and the ubiquitination pathway upon T cell differentiation. All MS data have been deposited in the ProteomeXchange with identifier PXD001066 (http://proteomecentral.proteomexchange.org/dataset/PXD001066).


Assuntos
Diferenciação Celular , Proteoma/metabolismo , Células Th1/metabolismo , Células Cultivadas , Cromatografia Líquida , Humanos , Proteoma/análise , Proteômica , Espectrometria de Massas em Tandem , Células Th1/citologia , Ubiquitinação
13.
Blood ; 122(6): 932-42, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23794066

RESUMO

Dendritic cells (DC) have the unique capacities to induce primary T-cell responses. In mice, CD8α(+)DC are specialized to cross-prime CD8(+) T cells and produce interleukin-12 (IL-12) that promotes cytotoxicity. Human BDCA-3(+)DC share several relevant characteristics with CD8α(+)DC, but the capacities of human DC subsets to induce CD8(+) T-cell responses are incompletely understood. Here we compared CD1c(+) myeloid DC (mDC)1, BDCA-3(+)mDC2, and plasmacytoid DC (pDC) in peripheral blood and lymphoid tissues for phenotype, cytokine production, and their capacities to prime cytotoxic T cells. mDC1 were surprisingly the only human DC that secreted high amounts of IL-12p70, but they required combinational Toll-like receptor (TLR) stimulation. mDC2 and pDC produced interferon-λ and interferon-α, respectively. Importantly, mDC1 and mDC2 required different combinations of TLR ligands to cross-present protein antigens to CD8(+) T cells. pDC were inefficient and also expressed lower levels of major histocompatibility complex and co-stimulatory molecules. Nevertheless, all DC induced CD8(+) memory T-cell expansions upon licensing by CD4(+) T cells, and primed naive CD8(+) T cells following appropriate TLR stimulation. However, because mDC1 produced IL-12, they induced the highest levels of cytotoxic molecules. In conclusion, CD1c(+)mDC1 are the relevant source of IL-12 for naive T cells and are fully equipped to cross-prime cytotoxic T-cell responses.


Assuntos
Antígenos CD1/metabolismo , Células Dendríticas/citologia , Glicoproteínas/metabolismo , Interleucina-12/metabolismo , Linfócitos T Citotóxicos/citologia , Animais , Apresentação de Antígeno , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Proliferação de Células , Separação Celular , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Memória Imunológica , Interferon-alfa/metabolismo , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos , Fenótipo , Receptores Toll-Like/metabolismo
14.
Mol Cell Proteomics ; 11(12): 1885-97, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22997428

RESUMO

Autoimmune hepatitis (AIH) is an unresolving inflammation of the liver of unknown cause. Diagnosis requires the exclusion of other conditions and the presence of characteristic features such as specific autoantibodies. Presently, these autoantibodies have relatively low sensitivity and specificity and are identified via immunostaining of cells or tissues; therefore, there is a diagnostic need for better and easy-to-assess markers. To identify new AIH-specific autoantigens, we developed a protein microarray comprising 1626 human recombinant proteins, selected in silico for being secreted or membrane associated. We screened sera from AIH patients on this microarray and compared the reactivity with that of sera from healthy donors and patients with chronic viral hepatitis C. We identified six human proteins that are specifically recognized by AIH sera. Serum reactivity to a combination of four of these autoantigens allows identification of AIH patients with high sensitivity (82%) and specificity (92%). Of the six autoantigens, the interleukin-4 (IL4) receptor fibronectin type III domain of the IL4 receptor (CD124), which is expressed on the surface of both lymphocytes and hepatocytes, showed the highest individual sensitivity and specificity for AIH. Remarkably, patients' sera inhibited STAT6 phosphorylation induced by IL4 binding to CD124, demonstrating that these autoantibodies are functional and suggesting that IL4 neutralization has a pathogenetic role in AIH.


Assuntos
Autoantígenos/sangue , Hepatite Autoimune/sangue , Subunidade alfa de Receptor de Interleucina-4/imunologia , Interleucina-4/metabolismo , Fator de Transcrição STAT6/imunologia , Anticorpos Neutralizantes/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoantígenos/análise , Autoantígenos/imunologia , Biomarcadores/sangue , Hepatite Autoimune/diagnóstico , Hepatite Autoimune/imunologia , Humanos , Interleucina-4/imunologia , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Fígado/imunologia , Fígado/patologia , Fosforilação , Análise Serial de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/imunologia , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais
16.
Eur J Immunol ; 40(6): 1603-16, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20306469

RESUMO

Detection of CD4(+) T cells specific for tumor-associated antigens is critical to investigate the spontaneous tumor immunosurveillance and to monitor immunotherapy protocols in patients. We investigated the ability of HLA-DR 1101 multimers to detect CD4(+) T cells specific for three highly promiscuous MAGE-A3 derived peptides: MAGE-A3(191-205) (p39), MAGE-A3(281-295) (p57) and MAGE-A3(286-300) (p58). Tetramers stained specific CD4(+) T cells only when loaded with p39, although all peptides activated the specific T cells when presented by plastic-bound HLA-DR 1101 monomers. This suggested that tetramer staining ability was determined by the mode rather than the affinity of peptide binding to HLA-DR 1101. We hypothesized that peptides should bear a single P1 anchor residue to bind all arms of the multimer in a homogeneous register to generate peptide-HLA-DR conformers with maximal avidity. Bioinformatics analysis indicated that p39 contained one putative P1 anchor residue, whereas the other two peptides contained multiple ones. Designing p57 and p58 analogues containing a single anchor residue generated HLA-DR 1101 tetramers that stained specific CD4(+) T cells. Producing HLA-DR 1101 monomers linked with the optimized MAGE-A3 analogues, but not with the original epitopes, further improved tetramer efficiency. Optimization of CD4(+) T-cell epitope-binding registers is thus critical to generate functional HLA-DR tetramers.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Antígenos HLA-DR/imunologia , Proteínas de Neoplasias/imunologia , Fragmentos de Peptídeos/imunologia , Linhagem Celular , Separação Celular , Citometria de Fluxo , Humanos , Reação em Cadeia da Polimerase
17.
Sci Signal ; 14(676)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785611

RESUMO

Innate immune responses to Gram-negative bacteria depend on the recognition of lipopolysaccharide (LPS) by a receptor complex that includes CD14 and TLR4. In dendritic cells (DCs), CD14 enhances the activation not only of TLR4 but also that of the NFAT family of transcription factors, which suppresses cell survival and promotes the production of inflammatory mediators. NFAT activation requires Ca2+ mobilization. In DCs, Ca2+ mobilization in response to LPS depends on phospholipase C γ2 (PLCγ2), which produces inositol 1,4,5-trisphosphate (IP3). Here, we showed that the IP3 receptor 3 (IP3R3) and ITPKB, a kinase that converts IP3 to inositol 1,3,4,5-tetrakisphosphate (IP4), were both necessary for Ca2+ mobilization and NFAT activation in mouse and human DCs. A pool of IP3R3 was located on the plasma membrane of DCs, where it colocalized with CD14 and ITPKB. Upon LPS binding to CD14, ITPKB was required for Ca2+ mobilization through plasma membrane-localized IP3R3 and for NFAT nuclear translocation. Pharmacological inhibition of ITPKB in mice reduced both LPS-induced tissue swelling and the severity of inflammatory arthritis to a similar extent as that induced by the inhibition of NFAT using nanoparticles that delivered an NFAT-inhibiting peptide specifically to phagocytic cells. Our results suggest that ITPKB may represent a promising target for anti-inflammatory therapies that aim to inhibit specific DC functions.


Assuntos
Cálcio/metabolismo , Células Dendríticas , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Lipopolissacarídeos , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/genética
18.
Cytometry A ; 73(11): 1010-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18612991

RESUMO

MHC-class I tetramers technology enabled the characterization of peptide-specific T cells at the single cell level in a variety of studies. Several laboratories have also developed MHC-class II multimers to characterize Ag-specific CD4+ T cells. However, the generation and use of MHC-class II multimers seems more problematic than that of MHC-I multimers. We have generated HLA-DR*1101 tetramers in a versatile empty form, which can be loaded after purification with peptides of interest. We discuss the impact of critical biological and structural parameters for the optimal staining of Ag-specific CD4+ T cells using HLA-DR*1101 tetramers, such as: (i) activation state of CD4+ T cells; (ii) membrane trafficking in the target CD4+ T cells; (iii) binding characteristics of the loaded CD4 epitope. Our data indicate that reorganization of TCR on the plasma membrane upon CD4+ T cell activation, as well as an homogenous binding frame of the CD4 epitopes to the soluble HLA-DR monomer, are critical for a stable TCR/MHC-class II tetramer interaction. These factors, together with the low frequencies and affinities of specific CD4+ T cells, explain the need for in vitro expansion or ex vivo enrichment of specific T cells for the optimal visualization with MHC-class II tetramers.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Animais , Antígenos/imunologia , Drosophila , Mapeamento de Epitopos , Antígenos HLA-DR/imunologia , Cadeias HLA-DRB1 , Humanos , Ativação Linfocitária , Microdomínios da Membrana , Peptídeos/imunologia , Multimerização Proteica , Reprodutibilidade dos Testes , Temperatura
19.
Sci Rep ; 8(1): 9321, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915318

RESUMO

Human multipotent mesenchymal stromal cells (MSC) are isolated from a plethora of tissue sources for cell therapy purposes. In 2006, the International Society for Cellular Therapy (ISCT) published minimal guidelines to define MSC identity. Nevertheless, many independent studies demonstrated that cells meeting the ISCT criteria possessed heterogeneous phenotypes and functionalities, heavily influenced by culture conditions. In this study, human MSC derived from many adult (bone marrow and adipose tissue) or fetal (cord blood, Wharton's jelly, umbilical cord perivascular compartment and amniotic fluid) tissues were investigated. Their immunophenotype was analyzed to define consistent source-specific markers by extensive flow cytometry analysis and real-time qRT-PCR. CD271+ subpopulations were detected in adult MSC, whereas NG2 was significantly more expressed in fetal MSC but failed validation on independent samples coming from an external laboratory. The highest number of CD271+ adult MSC were detected soon after isolation in serum-based culture conditions. Furthermore, heterogeneous percentages of CD271 expression were found in platelet lysate-based or serum-free culture conditions. Finally, CD271+ adult MSC showed high clonogenic and osteogenic properties as compared to CD271- cells. To conclude, in this phenotype-function correlation study CD271+ subpopulation confers heterogeneity on adult MSC, confirming the need of more specific markers to address MSC properties.


Assuntos
Adapaleno/metabolismo , Células-Tronco Adultas/metabolismo , Células-Tronco Fetais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adulto , Biomarcadores/metabolismo , Forma Celular , Células Cultivadas , Células Clonais , Análise por Conglomerados , Humanos , Imunofenotipagem , Pessoa de Meia-Idade , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo
20.
Mol Cell Biol ; 38(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30201806

RESUMO

The translational capability of ribosomes deprived of specific nonfundamental ribosomal proteins may be altered. Physiological mechanisms are scanty, and it is unclear whether free ribosomal proteins can cross talk with the signaling machinery. RACK1 (receptor for activated C kinase 1) is a highly conserved scaffold protein, located on the 40S subunit near the mRNA exit channel. RACK1 is involved in a variety of intracellular contexts, both on and off the ribosomes, acting as a receptor for proteins in signaling, such as the protein kinase C (PKC) family. Here we show that the binding of RACK1 to ribosomes is essential for full translation of capped mRNAs and efficient recruitment of eukaryotic initiation factor 4E (eIF4E). In vitro, when RACK1 is partially depleted, supplementing the ribosome machinery with wild-type RACK1 restores the translational capability, whereas the addition of a RACK1 mutant that is unable to bind ribosomes does not. Outside the ribosome, RACK1 has a reduced half-life. By accumulating in living cells, free RACK1 exerts an inhibitory phenotype, impairing cell cycle progression and repressing global translation. Here we present RACK1 binding to ribosomes as a crucial way to regulate translation, possibly through interaction with known partners on or off the ribosome that are involved in signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA