Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675301

RESUMO

Dietary composition substantially determines human health and affects complex diseases, including obesity, inflammation and cancer. Thus, food supplements have been widely used to accommodate dietary composition to the needs of individuals. Among the promising supplements are dietary phospholipids (PLs) that are commonly found as natural food ingredients and as emulsifier additives. The aim of the present study was to evaluate the effect of major PLs found as food supplements on the morphology of intestinal epithelial cells upon short-term and long-term high-dose feeding in mice. In the present report, the effect of short-term and long-term high dietary PL content was studied in terms of intestinal health and leaky gut syndrome in male mice. We used transmission electron microscopy to evaluate endothelial morphology at the ultrastructural level. We found mitochondrial damage and lipid droplet accumulation in the intracristal space, which rendered mitochondria more sensitive to respiratory uncoupling as shown by a mitochondrial respiration assessment in the intestinal crypts. However, this mitochondrial damage was insufficient to induce intestinal permeability. We propose that high-dose PL treatment impairs mitochondrial morphology and acts through extensive membrane utilization via the mitochondria. The data suggest that PL supplementation should be used with precaution in individuals with mitochondrial disorders.


Assuntos
Dieta , Fosfolipídeos , Masculino , Humanos , Camundongos , Animais , Fosfolipídeos/farmacologia , Fosfolipídeos/química , Suplementos Nutricionais , Mitocôndrias , Glicerofosfolipídeos , Ácidos Graxos/farmacologia , Células Epiteliais
2.
Crit Rev Food Sci Nutr ; 62(9): 2526-2547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33297728

RESUMO

Extrusion cooking is receiving increasing attention as technology applied for the production of protein-based products. Researchers in this field showed that proteins from several sources are barely consumed because of their poor functionality and lack of acceptability related to the presence of some antinutritional factors. In this regard, extrusion is becoming of key importance thanks to its ability to improve protein functional properties. Based on this remarkable advantage, several studies have been published so far providing evidence of the enhanced functional, physicochemical and sensory properties of protein-based extruded products. The objective of the present review is to give a detailed overview of the potential of extrusion for the production of protein-based products. More specifically, the work describes all the studies published so far on vegetable and animal proteins including those recently released applying the technology on insect proteins. The aspects related to the functional properties of the extrudates together with the quality changes occurring during the process are also described to highlight the potential of the technology for future applications.


Assuntos
Culinária , Verduras
3.
Sensors (Basel) ; 22(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36236596

RESUMO

Phenolic compounds are an important group of organic molecules with high radical scavenging, antimicrobial, anti-inflammatory, and antioxidant properties. The emerging interest in phenolic compounds in food products has led to the development of various analytical techniques for their detection and characterization. Among them, the coulometric array detector is a sensitive, selective, and precise method for the analysis of polyphenols. This review discusses the principle of this method and recent advances in its development, as well as trends in its application for the analysis of phenolic compounds in food products, such as fruits, cereals, beverages, herbs, and spices.


Assuntos
Anti-Infecciosos , Antioxidantes , Frutas/química , Fenóis/análise , Polifenóis/análise
4.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270939

RESUMO

This work aims to evaluate the purity of chromatographic peaks by a two-dimensional correlation (2D-corr) analysis. Such an analysis leads to two contour plots: synchronous and asynchronous. The synchronous contour plot provides information on the number of peaks present in the chromatogram. The asynchronous contour plot reveals the presence of overlapping species on each peak. The utility of 2D-corr analysis was demonstrated by the chromatographic analysis of Capsicum chili extracts obtained by HPLC coupled with a coulometric array of sixteen detectors. Thanks to 16 electrochemical sensors, each poised at increasing potentials, the resulting 2D-corr analysis revealed the presence of at least three species on the peak located at a retention time of 0.93 min. Mass spectrometry (MS) analysis was used to analyze the coeluting species, which were identified as: quinic acid (3.593 min), ascorbic acid (3.943 min), and phenylalanine (4.229 min). Overall, this work supports the use of 2D-corr analysis to reveal the presence of overlapping compounds and, thus, verify the signal purity of chromatographic peaks.


Assuntos
Cromatografia Líquida de Alta Pressão , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas
5.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209112

RESUMO

By-products of Capsicum chinense Jacq., var Jaguar could be a source of bioactive compounds. Therefore, we evaluated the anti-inflammatory effect, antioxidant activity, and their relationship with the polyphenol content of extracts of habanero pepper by-products obtained from plants grown on black or red soils of Yucatán, Mexico. Moreover, the impact of the type of extraction on their activities was evaluated. The dry by-product extracts were obtained by maceration (ME), Soxhlet (SOX), and supercritical fluid extraction (SFE). Afterward, the in vivo anti-inflammatory effect (TPA-induced ear inflammation) and the in vitro antioxidant activity (ABTS) were evaluated. Finally, the polyphenolic content was quantified by Ultra-Performance Liquid Chromatography (UPLC), and its correlation with both bioactivities was analyzed. The results showed that the SFE extract of stems of plants grown on red soil yielded the highest anti-inflammatory effect (66.1 ± 3.1%), while the extracts obtained by ME and SOX had the highest antioxidant activity (2.80 ± 0.0052 mM Trolox equivalent) and polyphenol content (3280 ± 15.59 mg·100 g-1 dry basis), respectively. A negative correlation between the anti-inflammatory effect, the antioxidant activity, and the polyphenolic content was found. Overall, the present study proposed C. chinense by-products as a valuable source of compounds with anti-inflammatory effect and antioxidant activity.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Capsicum/química , Extratos Vegetais/química , Polifenóis/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Fracionamento Químico/métodos , Cromatografia com Fluido Supercrítico , Especificidade de Órgãos , Compostos Fitoquímicos/química
6.
Cell Biol Int ; 45(11): 2238-2250, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34288224

RESUMO

Even though rats are popular model animals, the ultrastructure of their pluripotent cells, that is, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), remains unexplored, although fine structure of pluripotent stem cells of mice and humans and its changes during differentiation have been investigated well. In the present study, we carried out ultrastructural and morphometric analyses of three lines of rat ESCs and two lines of rat iPSCs. The rat pluripotent stem cells were found to have the main typical morphological features of pluripotent cells: large nuclei of irregular or nearly round shape, scanty cytoplasm with few membrane organelles, and a poorly developed Golgi apparatus and endoplasmic reticulum. The cytoplasm of the rat pluripotent cells contains clusters of glycogen, previously described in human ESCs. To identify possible differences between rat ESCs and iPSCs, we performed a morphometric analysis of cell parameters. The mean area of cells and nuclei, the nuclear/cytoplasmic ratio, distributions of glycogen and diversity of mitochondria showed marked variations among the lines of rat pluripotent stem cells and were more pronounced than variations between rat ESCs and iPSCs as separate types of pluripotent stem cells. We noted morphological heterogeneity of the mitochondrial population in the rat pluripotent stem cells. The cells contained three types of mitochondria differing in the structure of cristae and in matrix density, and our morphometric analysis revealed differences in cristae structure.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/metabolismo , Animais , Diferenciação Celular/fisiologia , Núcleo Celular/patologia , Células-Tronco Embrionárias/ultraestrutura , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Células-Tronco Pluripotentes/citologia , Ratos
7.
Molecules ; 25(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878137

RESUMO

Lipid-soluble bioactives are important nutrients in foods. However, their addition in food formulations, is often limited by limited solubility and high tendency for oxidation. Lipid-soluble bioactives, such as vitamins A, E, D and K, carotenoids, polyunsaturated fatty acids (PUFA) and essential oils are generally dispersed in water-based solutions by homogenization. Among the different homogenization technologies available, nanoemulsions are one of the most promising. Accordingly, this review aims to summarize the most recent advances in nanoemulsion technology for the encapsulation of lipid-soluble bioactives. Modern approaches for producing nanoemulsion systems will be discussed. In addition, the challenges on the encapsulation of common food ingredients, including the physical and chemical stability of the nanoemulsion systems, will be also critically examined.


Assuntos
Composição de Medicamentos , Emulsões , Lipídeos/química , Nanopartículas/química , Nanotecnologia , Algoritmos , Estabilidade de Medicamentos , Modelos Teóricos , Estrutura Molecular , Nanotecnologia/métodos , Solubilidade
8.
Molecules ; 24(22)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717511

RESUMO

This study aims to investigate the effect of essential oils extracted from wood residues of Picea abies on the growth of Escherichia coli. The essential oils were extracted by supercritical carbon dioxide, leading to a yield of 3.4 ± 0.5% (w/w) in 120 min. The antimicrobial effect was tested at 37 °C by isothermal calorimetry. The heat-flow (dq/dt vs. time) was integrated to give a fractional reaction curve (α vs. time). Such curves were fitted by a modified Gompertz function to give the lag-time (λ) and the maximum growth rate (µmax) parameters. The results showed that λ was linearly correlated with E. coli concentration (λ = 1.4 h/log (CFU/mL), R2 = 0.997), whereas µmax was invariant. Moreover, the overall heat was nearly constant to all the dilutions of E. coli. Instead, when the essential oil was added (with concentrations ranging from 1 to 5 mg/L) to a culture of E. coli (104 CFU/mL), the lag-time increased from 14.1 to 33.7 h, and the overall heat decreased from 2120 to 2.37 J. The results obtained by the plate count technique were linear with the lag-time (λ), where (λ = -7.3 × log (CFU/mL) + 38.3, R2 = 0.9878). This suggested a lower capacity of E. coli to metabolize the substrate in the presence of the essential oils. The results obtained in this study promote the use of essential oils from wood residues and their use as antimicrobial products.


Assuntos
Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Picea/química , Extratos Vegetais/farmacologia , Abies/química , Contagem de Colônia Microbiana/métodos , Óleos Voláteis/farmacologia
9.
ACS Food Sci Technol ; 4(7): 1783-1794, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39050589

RESUMO

Italian saffron (Crocus sativus L.) is gaining visibility due to its high quality and difference in growing area. In this study, the metabolite composition and quality of Italian saffron samples purchased from local producers and supermarkets were investigated using an untargeted metabolomics approach using UPLC-ESI-TOF MS with simultaneous acquisition of low- and high-collision energy mass spectrometry (MSe). Unsupervised statistical method (PCA) highlighted significant differences in the metabolomes, even if not related to the geographical origin. OPLS-DA revealed 9(S)-,10-(S)-,13-(S)-tri-hydroxy-11-(E)-octadecenoic acid as the most decisive compound to distinguish supermarket saffron, while oxidized crocins represented the most valuable markers to further describe the quality of saffron, even in locally produced samples. Known adulterations with paprika and turmeric were detected at a limit of 10%, and the increasing signals of cyclocurcumin was a significant biomarker for turmeric contamination. The results were underlined with conventional and kinetic antioxidant assays.

10.
Food Chem ; 456: 140011, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38876065

RESUMO

This study introduced differential photocalorimetry (DPC) as a method for real-time monitoring of the photo-oxidation kinetics of vegetable oils. DPC measures the heat flow generated during the oxidation of oils upon light exposure. Experiments conducted with stripped linseed oil (SLSO), an oil depleted from its natural antioxidants, showed no induction time (τ). Conversely, spiking SLSO with increasing concentrations of trans-ferulic acid resulted in an induction time (τ) proportional to the antioxidant concentration (R2 = 0.99). A comparative study among different vegetable oils revealed that rice bran oil exhibited the highest resistant to photo-oxidation, followed by corn, soybean, and sunflower oils. The results are discussed in terms of sample oxidizability and antioxidant efficiency (A.E.), and validated through high-performance liquid chromatography with diode array detection (HPLC-DAD). Furthermore, the measured heat flow enabled the determination of the rates of inhibited (Rinh) and uninhibited (Runi) periods, as well as the rate constant of propagation (kp) and inhibition (kinh) reactions.


Assuntos
Oxirredução , Óleos de Plantas , Óleos de Plantas/química , Cinética , Luz , Cromatografia Líquida de Alta Pressão , Processos Fotoquímicos
11.
Talanta ; 270: 125513, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128278

RESUMO

Acrolein is a toxic volatile compound derived from oxidative processes, that can be formed in foods during storage and cooking. This study employs proton transfer reaction mass spectrometry (PTR-MS) to detect acrolein precursors in vegetable oils by focusing on the m/z (mass-to-charge ratio) 57. To this purpose, hempseed, sesame, walnut, olive and linseed oils were stored for 168 h at 60 °C in presence of 2,2'-azobis(2-metilpropionitrile) (3 mM) radicals initiator. The evolution of m/z 57 by PTR-MS was also compared with traditional lipid oxidation indicators such as peroxide value, conjugated diene, oxygen consumption and, isothermal calorimetry. The obtained results were explained by the fatty acid composition and antioxidant capacity of the oils. Hempseed fresh oil presented a very low total volatile organic compounds (VOCs) intensity (5.6 kncps). Nonetheless, after storage the intensity increased ∼70 times. A principal component analysis (PCA) confirmed the potential of m/z 57 to differentiate fresh versus rancid hempseed oil sample. During an autoxidation experiment oils high in linolenic and linoleic acids showed higher m/z 57 emissions and shorter induction times: linseed oil (38 h) > walnut oil (47 h) > hempseed oil (80 h). The m/z 57 emission presented a high correlation coefficient with the total VOC signal (r > 0.95), conjugated dienes and headspace oxygen consumption. A PCA analysis showed a complete separation of the fresh oils on the first component (most significant) with the exception of olive oil. Walnut, hempseed and linseed oil were placed on the extreme right nearby total VOCs and m/z 57. The results obtained highlight the potential of PTR-MS for the early detection of oil autoxidation, serving as a quality control tool for potential acrolein precursor emissions, thereby enhancing food safety in the industry.


Assuntos
Óleos de Plantas , Compostos Orgânicos Voláteis , Óleos de Plantas/análise , Acroleína , Prótons , Óleo de Semente do Linho , Espectrometria de Massas , Compostos Orgânicos Voláteis/análise
12.
Food Chem X ; 21: 101216, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38384689

RESUMO

Kamut® wheat (Triticum turgidum ssp. turanicum), an ancient, underutilized cereal, offers potential health benefits due to its phenolic compounds. This study aimed to investigate the antioxidant potential of Kamut® wheat's free and bound phenolic extracts using an HPLC system equipped with three detectors. The bound extracts, released after alkaline hydrolysis, exhibited higher total phenolic and flavonoid content compared to the free extracts (p < 0.05). The total antioxidant capacity of bound extracts was six-fold greater than in free extracts (p < 0.05). The main antioxidants in free extracts were tyrosine, phenylalanine, tryptophan, and apigenin. In bound extracts, ferulic acid, its dimers and trimer were present. Kamut® wheat exhibited a source of dietary antioxidants and should be considered a potential ingredient for the development of functional foods. Also, the HPLC-triple detector system is effective for in-depth profiling of antioxidant compounds, paving the way for future research on similar grains.

13.
Food Chem ; 443: 138596, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301566

RESUMO

Enzymatic glycerolysis is a biotechnological process for structuring vegetable oils. This study investigates the kinetics of glycerolysis of peanut oil and explores the potential of the resulting structured oil to enhance the physical stability of water-in-oil emulsions. Using a 1:1 glycerol-to-oil molar ratio and 4 % lipase B from Candida antarctica as a catalyst, the reaction was conducted at 65 °C with stirring at 400 rpm. Acylglyceride fractions changes were quantified through NMR and DSC. Fat crystal formation was observed using scanning electron microscopy. The results revealed a first-order decay pattern, converting triglycerides into monoacylglycerides and diacylglycerides in less than 16 h. Subsequently, water-in-oil emulsions prepared with glycerolized oil showed augmented stability through multiple light scattering techniques and visual assessment. The structured oils effectively delayed phase separation, highlighting the potential of glycerolysis in developing vegetable oil-based emulsions with improved functional properties and reduced saturated fatty acid content.


Assuntos
Óleos de Plantas , Água , Óleos de Plantas/química , Emulsões , Óleos , Glicerol/química , Ácidos Graxos/química
14.
Food Chem ; 438: 138048, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38000157

RESUMO

Cyclopropane fatty acids (CPFAs) serve as indicators of silage feeding, verifying the authenticity of hay milk where silage feeding is forbidden. In this study, the authenticity of hay milk was determined by detecting CPFAs using proton nuclear magnetic resonance (1H NMR) spectroscopy. 245 milk samples were collected in South Tyrol (Italy), categorized as follows: 98 from grass silage-fed cows, 98 from maize silage-fed cows, and 49 authentic hay milk. The limit of detection of CPFAs was 12 µM, corresponding to 70 mg/kg of freeze-dried milk. The CPFAs were absent in all of the hay milk samples, verifying their authenticity. In contrast, 97 % of maize silage and 77 % of grass silage samples exhibited distinct CPFAs signals. These findings were further corroborated by gas chromatography-mass detector (GC-MS) analysis. The study highlights 1H NMR as a robust, and rapid technique for hay milk authentication, supporting alpine dairy production and increasing consumer trust in food authenticity.


Assuntos
Leite , Silagem , Feminino , Animais , Bovinos , Leite/química , Silagem/análise , Lactação , Ração Animal/análise , Ácidos Graxos/análise , Poaceae , Zea mays , Espectroscopia de Ressonância Magnética , Dieta/veterinária
15.
Free Radic Biol Med ; 211: 145-157, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043869

RESUMO

It is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions. We have found that hypoxia induced an increase in H2O2 production in adult cardiomyocytes, while neonatal cardiomyocytes experienced a decrease in H2O2 levels. This finding correlates with our observation of the difference between the electron transport chain (ETC) properties and mitochondria amount in adult and neonatal cells. We demonstrated that in adult cardiomyocytes hypoxia caused the significant increase in the ETC loading with electrons compared to normoxia. On the contrary, in neonatal cardiomyocytes ETC loading with electrons was similar under both normoxic and hypoxic conditions that could be due to ETC non-functional state and the absence of the electrons transfer to O2 under normoxia. In addition to the variations in H2O2 production, we also noted consistent pH dynamics under hypoxic conditions. Notably, the pH levels exhibited a similar decrease in both cell types, thus, acidosis is a more universal cellular response to hypoxia. We also demonstrated that the amount of mitochondria and the levels of cardiac isoforms of troponin I, troponin T, myoglobin and GAPDH were significantly higher in adult cardiomyocytes compared to neonatal ones. Remarkably, we found out that under hypoxia, the levels of cardiac isoforms of troponin T, myoglobin, and GAPDH were elevated in adult cardiomyocytes, while their level in neonatal cells remained unchanged. Obtained data contribute to the understanding of the mechanisms of neonatal cardiomyocytes' resistance to hypoxia and the ability to maintain the metabolic homeostasis in contrast to adult ones.


Assuntos
Peróxido de Hidrogênio , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Peróxido de Hidrogênio/metabolismo , Mioglobina , Troponina T/metabolismo , Hipóxia Celular , Hipóxia/metabolismo , Oxirredução , Isoformas de Proteínas/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-39086238

RESUMO

The lack of oxygen (O2) causes changes in the cell functioning. Modeling hypoxic conditions in vitro is challenging given that different cell types exhibit different sensitivities to tissue O2 levels. We present an effective in vivo platform for assessing various tissue and organ parameters in Danio rerio larvae under acute hypoxic conditions. Our system allows simultaneous positioning of multiple individuals within a chamber where O2 level in the water can be precisely and promptly regulated, all while conducting microscopy. We applied this approach in combination with a genetically encoded pH-biosensor SypHer3s and a highly H2O2-sensitive Hyper7 biosensor. Hypoxia causes H2O2 production in areas of brain, heart and skeletal muscles, exclusively in the mitochondrial matrix; it is noteworthy that H2O2 does not penetrate into the cytosol and is neutralized in the matrix upon reoxygenation. Hypoxia causes pronounced tissue acidosis, expressed by a decrease in pH by 0.4-0.6 units everywhere. Using imaging photoplethysmography, we measured in D.rerio fry real-time heart rate decrease under conditions of hypoxia and subsequent reoxygenation. Our observations in this experimental system lead to the hypothesis that mitochondria are the only source of H2O2 in cells of D.rerio under hypoxia.

17.
Sci Rep ; 13(1): 7621, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164998

RESUMO

The reaction kinetics of antioxidants with free radicals is crucial to screen their functionality. However, studying antioxidant-radical interactions is very challenging for fast electron-donor substances, such as ascorbic acid, because the reaction ends in a few seconds. Accordingly, this work proposes a rapid and sensitive method for the determination of the absolute rate constant of the reaction between fast antioxidants and DPPH•. The method consists of a stopped-flow spectrophotometric system, which monitors the decay of DPPH• during its interaction with antioxidants. A kinetic-based reaction mechanism fits the experimental data. Kinetic parameters include a second order kinetics (k1) and, depending on the type of antioxidant, a side reaction (k2). Ascorbic acid was the fastest antioxidant (k1 = 21,100 ± 570 M-1 s-1) in comparison with other eleven phenols, showing k1 values from 45 to 3070 M-1 s-1. Compounds like catechin, epicatechin, quercetin, rutin, and tannic, ellagic and syringic acids presented a side reaction (k2 from 15 to 60 M-1 s-1). Among seven fruit juices, strawberry was the fastest, while red plum the slowest. Overall, the proposed kinetic-based DPPH• method is simple, rapid, and suitable for studying the activity and capacity of different molecules, and food samples rich in fast antioxidants, like fruit juices.

18.
Antioxidants (Basel) ; 12(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37507993

RESUMO

In recent years, there has been a growing interest in utilizing natural antioxidants as alternatives to synthetic additives in food products. Apples and apple by-products have gained attention as a potential source of natural antioxidants due to their rich phenolic content. However, the extraction techniques applied for the recovery of phenolic compounds need to be chosen carefully. Studies show that ultrasound-assisted extraction is the most promising technique. High yields of phenolic compounds with antioxidant properties have been obtained by applying ultrasound on both apples and their by-products. Promising results have also been reported for green technologies such as supercritical fluid extraction, especially when a co-solvent is used. Once extracted, recent studies also indicate the feasibility of using these compounds in food products and packaging materials. The present review aims to provide a comprehensive overview of the antioxidant properties of apples and apple by-products, their extraction techniques, and potential applications in food products because of their antioxidant or nutritional properties. The findings reported here highlight the proper utilization of apples and their by-products in food to reduce the detrimental effect on the environment and provide a positive impact on the economy.

19.
Cells ; 12(23)2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067130

RESUMO

Cohen syndrome is an autosomal recessive disorder caused by VPS13B (COH1) gene mutations. This syndrome is significantly underdiagnosed and is characterized by intellectual disability, microcephaly, autistic symptoms, hypotension, myopia, retinal dystrophy, neutropenia, and obesity. VPS13B regulates intracellular membrane transport and supports the Golgi apparatus structure, which is critical for neuron formation. We generated induced pluripotent stem cells from two patients with pronounced manifestations of Cohen syndrome and differentiated them into neural stem cells and neurons. Using transmission electron microscopy, we documented multiple new ultrastructural changes associated with Cohen syndrome in the neuronal cells. We discovered considerable disturbances in the structure of some organelles: Golgi apparatus fragmentation and swelling, endoplasmic reticulum structural reorganization, mitochondrial defects, and the accumulation of large autophagosomes with undigested contents. These abnormalities underline the ultrastructural similarity of Cohen syndrome to many neurodegenerative diseases. The cell models that we developed based on patient-specific induced pluripotent stem cells can serve to uncover not only neurodegenerative processes, but the causes of intellectual disability in general.


Assuntos
Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , Microcefalia , Miopia , Células-Tronco Neurais , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas de Transporte Vesicular/genética , Obesidade/genética , Neurônios
20.
Plants (Basel) ; 11(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35956538

RESUMO

Habanero pepper leaves and stems (by-products) have been traditionally considered waste; however, bioactive compounds such as polyphenols, vitamin C and carotenoids have been identified that can be used for formulation of nutraceuticals or functional foods. Furthermore, the extraction of these bioactive compounds by using environmentally friendly methods and solvents is desirable. Thus, the aim of this study was to assess the antioxidant capacity, total polyphenol content (TPC), the phenolic profile and vitamin C content in extracts obtained from by-products (stems and leaves) of two varieties (Mayapan and Jaguar) of habanero pepper by ultrasound-assisted extraction (UAE) using natural deep eutectic solvents (NADES). The results showed that NADES leads to extracts with significantly higher TPC, higher concentrations of individual polyphenols (gallic acid, protocatechuic acid, chlorogenic acid, cinnamic acid, coumaric acid), vitamin C and, finally, higher antioxidant capacity (9.55 ± 0.02 eq mg Trolox/g DM) than UAE extraction performed with methanol as the solvent. The association of individual polyphenols with NADES was confirmed by principal component analysis (PCA). Overall, NADES is an innovative and promising "green" extraction technique that can be applied successfully for the extraction of phenolic compounds from habanero pepper by-products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA