Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 19(12): 2454-2468, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272801

RESUMO

Soil-borne microbes can establish compatible relationships with host plants, providing a large variety of nutritive and protective compounds in exchange for photosynthesized sugars. However, the molecular mechanisms mediating the establishment of these beneficial relationships remain unclear. Our previous genetic mapping and whole-genome resequencing studies identified a gene deletion event of a Populus trichocarpa lectin receptor-like kinase gene PtLecRLK1 in Populus deltoides that was associated with poor-root colonization by the ectomycorrhizal fungus Laccaria bicolor. By introducing PtLecRLK1 into a perennial grass known to be a non-host of L. bicolor, switchgrass (Panicum virgatum L.), we found that L. bicolor colonizes ZmUbipro-PtLecRLK1 transgenic switchgrass roots, which illustrates that the introduction of PtLecRLK1 has the potential to convert a non-host to a host of L. bicolor. Furthermore, transcriptomic and proteomic analyses on inoculated-transgenic switchgrass roots revealed genes/proteins overrepresented in the compatible interaction and underrepresented in the pathogenic defence pathway, consistent with the view that pathogenic defence response is down-regulated during compatible interaction. Metabolomic profiling revealed that root colonization in the transgenic switchgrass was associated with an increase in N-containing metabolites and a decrease in organic acids, sugars, and aromatic hydroxycinnamate conjugates, which are often seen in the early steps of establishing compatible interactions. These studies illustrate that PtLecRLK1 is able to render a plant susceptible to colonization by the ectomycorrhizal fungus L. bicolor and shed light on engineering mycorrhizal symbiosis into a non-host to enhance plant productivity and fitness on marginal lands.


Assuntos
Panicum , Lectinas , Panicum/genética , Panicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteômica
2.
Analyst ; 146(9): 3062-3072, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949432

RESUMO

Nonlinear optical microscopy that leverages an objective based total internal reflection (TIR) excitation scheme is an attractive means for rapid, wide-field imaging with enhanced surface sensitivity. Through select combinations of distinct modalities, one can, in principle, access complementary chemical and structural information for various chemical species near interfaces. Here, we report a successful implementation of such a wide-field nonlinear optical microscope system, which combines coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), second harmonic generation (SHG), and sum frequency generation (SFG) modalities on the same platform. The intense optical fields needed to drive these high order nonlinear optical processes are achieved through the use of femtosecond pulsed light in combination with the intrinsic field confinement induced by TIR over a large field of view. The performance of our multimodal microscope was first assessed through the experimental determination of its chemical fidelity, intensity and polarization dependences, and spatial resolution using a set of well-defined model systems. Subsequently, its unique capabilities were validated through imaging complex biological systems, including Hydrangea quercifolia pollen grains and Pantoea sp. YR343 bacterial cells. Specifically, the spatial distribution of different molecular groups in the former was visualized via vibrational contrast mechanisms of CARS, whereas co-registered TPF imaging allowed the identification of spatially localized intrinsic fluorophores. We further demonstrate the feasibility of our microscope for wide-field CARS imaging on live cells through independent characterization of cell viability using spatially co-registered TPF imaging. This approach to TIR enabled wide-field imaging is expected to provide new insights into bacterial strains and their interactions with other species in the rhizosphere in a time-resolved and chemically selective manner.


Assuntos
Microscopia , Análise Espectral Raman , Imagem Óptica , Fótons , Vibração
3.
New Phytol ; 228(5): 1627-1639, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32706429

RESUMO

The apparent antagonism between salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signalling resulting in trade-offs between defence against (hemi)biotrophic and necrotrophic pathogens has been widely described across multiple plant species. However, the underlying mechanism remains to be fully established. The molecular and cellular functions of ANGUSTIFOLIA (AN) were characterised, and its role in regulating the pathogenic response was studied in Arabidopsis. We demonstrated that AN, a plant homologue of mammalian C-TERMINAL BINDING PROTEIN (CtBP), antagonistically regulates plant resistance to the hemibiotrophic pathogen Pseudomonas syringae and the necrotrophic pathogen Botrytis cinerea. Consistent with phenotypic observations, transcription of genes involved in SA and JA/ET pathways was antagonistically regulated by AN. By interacting with another nuclear protein TYROSYL-DNA PHOSPHODIESTERASE1 (TDP1), AN imposes transcriptional repression on MYB46, encoding a transcriptional activator of PHENYLALANINE AMMONIA-LYASE (PAL) genes which are required for SA biosynthesis, while releasing TDP1-imposed transcriptional repression on WRKY33, a master regulator of the JA/ET signalling pathway. These findings demonstrate that transcriptional co-regulation of MYB46 and WRKY33 by AN mediates the coordination of SA and JA/ET pathways to optimise defences against (hemi)biotrophic and necrotrophic pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Repressoras , Fatores de Transcrição , Oxirredutases do Álcool , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis , Ciclopentanos , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Oxilipinas , Doenças das Plantas/genética , Ácido Salicílico
4.
Opt Lett ; 45(11): 3087-3090, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479466

RESUMO

Wide-field coherent anti-Stokes Raman scattering (CARS) microscopy offers an attractive means for the rapid and simultaneous acquisition of vibrationally resolved images across a large field of view. A major challenge in the implementation lies in how to achieve sufficiently strong excitation fields necessary to drive the third-order optical responses over the large focal region. Here, we report a new wide-field CARS microscope enabled by a total internal reflection excitation scheme using a femtosecond Ti:Sapphire oscillator to generate pump and broadband near-infrared Stokes pulses. The spectrally broad Stokes pulse, in combination with its inherent chirp, offers not only access to a wide range of Raman modes spanning ∼1000 to ∼3500cm-1 but also a straightforward means to select vibrational transitions within this range by simply varying the time delay between the pulses. The unique capabilities of this wide-field CARS microscope were validated by acquiring high-quality CARS images from the model and complex biological samples on conventional microscope coverslips.

5.
Chembiochem ; 20(2): 172-180, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30098105

RESUMO

Phosphatidylinositol (PI) lipids control critical biological processes, so aberrant biosynthesis often leads to disease. As a result, the capability to track the production and localization of these compounds in cells is vital for elucidating their complex roles. Herein, we report the design, synthesis, and application of clickable myo-inositol probe 1 a for bioorthogonal labeling of PI products. To validate this platform, we initially conducted PI synthase assays to show that 1 a inhibits PI production in vitro. Fluorescence microscopy experiments next showed probe-dependent imaging in T-24 human bladder cancer and Candida albicans cells. Growth studies in the latter showed that replacement of myo-inositol with probe 1 a led to an enhancement in cell growth. Finally, fluorescence-based TLC analysis and mass spectrometry experiments support the labeling of PI lipids. This approach provides a promising means for tracking the complex biosynthesis and trafficking of these lipids in cells.


Assuntos
Corantes Fluorescentes/química , Inositol/química , Engenharia Metabólica , Fosfatidilinositóis/química , Candida albicans/citologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Células Cultivadas , Química Click , Corantes Fluorescentes/síntese química , Humanos , Inositol/síntese química , Imagem Óptica
6.
J Proteome Res ; 17(4): 1361-1374, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29464956

RESUMO

Indole-3-acetic acid (IAA) plays a central role in plant growth and development, and many plant-associated microbes produce IAA using tryptophan as the precursor. Using genomic analyses, we predicted that Pantoea sp. YR343, a microbe isolated from Populus deltoides, synthesizes IAA using the indole-3-pyruvate (IPA) pathway. To better understand IAA biosynthesis and the effects of IAA exposure on cell physiology, we characterized proteomes of Pantoea sp. YR343 grown in the presence of tryptophan or IAA. Exposure to IAA resulted in upregulation of proteins predicted to function in carbohydrate and amino acid transport and exopolysaccharide (EPS) biosynthesis. Metabolite profiles of wild-type cells showed the production of IPA, IAA, and tryptophol, consistent with an active IPA pathway. Finally, we constructed an Δ ipdC mutant that showed the elimination of tryptophol, consistent with a loss of IpdC activity, but was still able to produce IAA (20% of wild-type levels). Although we failed to detect intermediates from other known IAA biosynthetic pathways, this result suggests the possibility of an alternate pathway or the production of IAA by a nonenzymatic route in Pantoea sp. YR343. The Δ ipdC mutant was able to efficiently colonize poplar, suggesting that an active IPA pathway is not required for plant association.


Assuntos
Ácidos Indolacéticos/farmacologia , Pantoea/química , Reguladores de Crescimento de Plantas/farmacologia , Populus/química , Vias Biossintéticas , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/efeitos dos fármacos , Populus/microbiologia , Proteoma/efeitos dos fármacos
7.
Anal Chem ; 89(21): 11443-11451, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29039646

RESUMO

Cell-free protein synthesis (CFPS) has the potential to produce enzymes, therapeutic agents, and other proteins, while circumventing difficulties associated with in vivo heterologous expression. However, the contents of the cell-free extracts used to carry out synthesis are generally not characterized, which hampers progress toward enhancing yield or functional activity of the target protein. We explored the utility of mass spectrometry (MS)-based proteomics for characterizing the bacterial extracts used for transcribing and translating gene sequences into proteins as well as the products of CFPS reactions. Full proteome experiments identified over 1000 proteins per reaction. The complete set of proteins necessary for transcription and translation were found, demonstrating the ability to define potential metabolic capabilities of the extract. Further, MS-based techniques allowed characterization of the CFPS product and provided insight into the synthesis reaction and potential functional activity of the product. These capabilities were demonstrated using two different CFPS products, the commonly used standard green fluorescent protein (GFP, 27 kDa) and the polyketide synthase DEBS1 (394 kDa). For the large, multidomain DEBS1, substantial premature termination of protein translation was observed. Additionally, MS/MS analysis, as part of a conventional full proteomics workflow, identified post-translational modifications, including the chromophore in GFP, as well as the three phosphopantetheinylation sites in DEBS1. A hypothesis-driven approach focused on these three sites identified that all were correctly modified for DEBS1 expressed in vivo but with less complete coverage for protein expressed in CFPS reactions. These post-translational modifications are essential for functional activity, and the ability to identify them with mass spectrometry is valuable for judging the success of the CFPS reaction. Collectively, the use of MS-based proteomics will prove advantageous for advancing the application of CFPS and related techniques.


Assuntos
Proteínas de Escherichia coli/biossíntese , Proteômica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas
8.
Proc Natl Acad Sci U S A ; 111(22): 8299-304, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24847068

RESUMO

Ectomycorrhizal fungi, such as Laccaria bicolor, support forest growth and sustainability by providing growth-limiting nutrients to their plant host through a mutualistic symbiotic relationship with host roots. We have previously shown that the effector protein MiSSP7 (Mycorrhiza-induced Small Secreted Protein 7) encoded by L. bicolor is necessary for the establishment of symbiosis with host trees, although the mechanistic reasoning behind this role was unknown. We demonstrate here that MiSSP7 interacts with the host protein PtJAZ6, a negative regulator of jasmonic acid (JA)-induced gene regulation in Populus. As with other characterized JASMONATE ZIM-DOMAIN (JAZ) proteins, PtJAZ6 interacts with PtCOI1 in the presence of the JA mimic coronatine, and PtJAZ6 is degraded in plant tissues after JA treatment. The association between MiSSP7 and PtJAZ6 is able to protect PtJAZ6 from this JA-induced degradation. Furthermore, MiSSP7 is able to block--or mitigate--the impact of JA on L. bicolor colonization of host roots. We show that the loss of MiSSP7 production by L. bicolor can be complemented by transgenically varying the transcription of PtJAZ6 or through inhibition of JA-induced gene regulation. We conclude that L. bicolor, in contrast to arbuscular mycorrhizal fungi and biotrophic pathogens, promotes mutualism by blocking JA action through the interaction of MiSSP7 with PtJAZ6.


Assuntos
Ciclopentanos/metabolismo , Laccaria/metabolismo , Micorrizas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Populus/genética , Proteínas de Arabidopsis/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Laccaria/genética , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Populus/imunologia , Populus/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Simbiose/fisiologia
9.
Analyst ; 141(7): 2175-82, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26948490

RESUMO

Chemical imaging of plant-bacteria co-cultures makes it possible to characterize bacterial populations and behaviors and their interactions with proximal organisms, under conditions closest to the environment in the rhizosphere. Here Raman micro-spectroscopy and confocal Raman imaging are used as minimally invasive probes to study the rhizosphere bacterial isolate, Pantoea sp. YR343, and its co-culture with model plant Arabidopsis thaliana by combining enhanced Raman spectroscopies with electron microscopy and principal component analysis (PCA). The presence of carotenoid pigments in the wild type Pantoea sp. YR343 was characterized using resonance Raman scattering, which was also used to confirm successful disruption of the crtB gene in an engineered carotenoid mutant strain. Other components of the Pantoea sp. YR343 cells were imaged in the presence of resonantly enhanced pigments using a combination of surface enhanced Raman imaging and PCA. Pantoea sp. YR343 cells decorated with Ag colloid synthesized ex situ gave spectra dominated by carotenoid scattering, whereas colloids synthesized in situ produced spectral signatures characteristic of flavins in the cell membrane. Scanning electron microscopy (SEM) of whole cells and transmission electron microscopy (TEM) images of thinly sliced cross-sections were used to assess structural integrity of the coated cells and to establish the origin of spectral signatures based on the position of Ag nanoparticles in the cells. Raman imaging was also used to characterize senescent green Arabidopsis thaliana plant roots inoculated with Pantoea sp. YR343, and PCA was used to distinguish spectral contributions from plant and bacterial cells, thereby establishing the potential of Raman imaging to visualize the distribution of rhizobacteria on plant roots.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Técnicas de Cocultura , Pantoea/química , Pantoea/crescimento & desenvolvimento , Rizosfera , Análise Espectral Raman , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Mutação , Pantoea/enzimologia , Pantoea/genética , Estereoisomerismo
10.
J Environ Sci (China) ; 34: 212-8, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26257364

RESUMO

This study took advantage of resorufin cellobioside as a fluorescent substrate to determine the distribution of cellulase activity in cellulosic biomass fermentation systems. Cellulolytic biofilms were found to express nearly four orders greater cellulase activity compared to planktonic cultures of Clostridium thermocellum and Caldicellulosiruptor obsidiansis, which can be primarily attributed to the high cell concentration and surface attachment. The formation of biofilms results in cellulases being secreted close to their substrates, which appears to be an energetically favorable stategy for insoluble substrate utilization. For the same reason, cellulases should be closely associated with the surfaces of suspended cell in soluble substrate-fed culture, which has been verified with cellobiose-fed cultures of C. thermocellum and C. obsidiansis. This study addressed the importance of cellulase activity distribution in cellulosic biomass fermentation, and provided theoretical foundation for the leading role of biofilm in cellulose degradation. System optimization and reactor designs that promote biofilm formation in cellulosic biomass hydrolysis may promise an improved cellulosic biofuel process.


Assuntos
Biofilmes , Celulases/metabolismo , Celulose/metabolismo , Firmicutes/fisiologia , Biocombustíveis/análise , Celulossomas , Clostridium thermocellum/fisiologia , Fermentação , Hidrólise
11.
Environ Sci Technol ; 48(20): 11969-76, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25268220

RESUMO

G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62). These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell-SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10(-19) to 25 × 10(-19) moles-Hg/cell (equivalent to Hg/cell-SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn(2+) leads to increased Hg reduction and decreased methylation. These results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.


Assuntos
Geobacter/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Adsorção , Anaerobiose , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Geobacter/efeitos dos fármacos , Geobacter/genética , Mercúrio/química , Metilação , Oxirredução , Compostos de Sulfidrila/metabolismo , Zinco/metabolismo
12.
Biomacromolecules ; 14(10): 3742-8, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24003861

RESUMO

Microbial exopolysaccharides (EPS) play a critical and dynamic role in shaping the interactions between microbial community members and their local environment. The capture of targeted microbes using surface immobilized lectins that recognize specific extracellular oligosaccharide moieties offers a nondestructive method for functional characterization of EPS content. In this report, we evaluate the use of the block copolymer, poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA), as a surface scaffold for lectin-specific microbial capture. Three-dimensional polymer films were patterned on silicon substrates to provide discrete, covalent coupling sites for Triticum vulgare and Lens culinaris lectins. This material increased the number of Pseudomonas fluorescens microbes captured by up to 43% compared to control scaffolds that did not contain the copolymer. These results demonstrate that PGMA-b-PVDMA scaffolds provide a platform for improved microbe capture and screening of EPS content by combining high avidity lectin surfaces with three-dimensional surface topography.


Assuntos
Lens (Planta)/química , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Ácidos Polimetacrílicos/metabolismo , Polivinil/metabolismo , Pseudomonas fluorescens/isolamento & purificação , Triticum/química , Estrutura Molecular , Tamanho da Partícula , Ácidos Polimetacrílicos/química , Polivinil/química , Propriedades de Superfície
13.
J Environ Sci (China) ; 25(5): 849-56, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24218813

RESUMO

Live cell imaging methods provide important insights into the dynamics of cellular processes that cannot be derived easily from population-averaged datasets. In the bioenergy field, much research is focused on fermentation of cellulosic biomass by thermophilic microbes to produce biofuels; however, little effort is dedicated to the development of imaging tools to monitor this dynamic biological process. This is, in part, due to the experimental challenges of imaging cells under both anaerobic and thermophilic conditions. Here an imaging system is described that integrates confocal microscopy, a flow cell device, and a lipophilic dye to visualize cells. Solutions to technical obstacles regarding suitable fluorescent markers, photodamage during imaging, and maintenance of environmental conditions during imaging are presented. This system was utilized to observe cellulose colonization by Clostridium thermocellum under anaerobic conditions at 60 degrees C. This method enables live cell imaging of bacterial growth under anaerobic and thermophilic conditions and should be widely applicable to visualizing different cell types or processes in real time.


Assuntos
Celulose/metabolismo , Clostridium thermocellum/metabolismo , Anaerobiose , Carbocianinas/farmacologia , Clostridium thermocellum/crescimento & desenvolvimento , Escherichia coli/genética , Corantes Fluorescentes/farmacologia , Temperatura Alta , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Análise de Célula Única
14.
Adv Sci (Weinh) ; 10(27): e2207373, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522628

RESUMO

Biofilms are aggregated bacterial communities structured within an extracellular matrix (ECM). ECM controls biofilm architecture and confers mechanical resistance against shear forces. From a physical perspective, biofilms can be described as colloidal gels, where bacterial cells are analogous to colloidal particles distributed in the polymeric ECM. However, the influence of the ECM in altering the cellular packing fraction (ϕ) and the resulting viscoelastic behavior of biofilm remains unexplored. Using biofilms of Pantoea sp. (WT) and its mutant (ΔUDP), the correlation between biofilm structure and its viscoelastic response is investigated. Experiments show that the reduction of exopolysaccharide production in ΔUDP biofilms corresponds with a seven-fold increase in ϕ, resulting in a colloidal glass-like structure. Consequently, the rheological signatures become altered, with the WT behaving like a weak gel, whilst the ΔUDP displayed a glass-like rheological signature. By co-culturing the two strains, biofilm ϕ is modulated which allows us to explore the structural changes and capture a change in viscoelastic response from a weak to a strong gel, and to a colloidal glass-like state. The results reveal the role of exopolysaccharide in mediating a structural transition in biofilms and demonstrate a correlation between biofilm structure and viscoelastic response.


Assuntos
Biofilmes , Matriz Extracelular , Vidro
15.
Metabolites ; 13(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837758

RESUMO

Pseudomonas fluorescens GM16 associates with Populus, a model plant in biofuel production. Populus releases abundant phenolic glycosides such as salicin, but P. fluorescens GM16 cannot utilize salicin, whereas Pseudomonas strains are known to utilize compounds similar to the aglycone moiety of salicin-salicyl alcohol. We propose that the association of Pseudomonas to Populus is mediated by another organism (such as Rahnella aquatilis OV744) that degrades the glucosyl group of salicin. In this study, we demonstrate that in the Rahnella-Pseudomonas salicin co-culture model, Rahnella grows by degrading salicin to glucose 6-phosphate and salicyl alcohol which is secreted out and is subsequently utilized by P. fluorescens GM16 for its growth. Using various quantitative approaches, we elucidate the individual pathways for salicin and salicyl alcohol metabolism present in Rahnella and Pseudomonas, respectively. Furthermore, we were able to establish that the salicyl alcohol cross-feeding interaction between the two strains on salicin medium is carried out through the combination of their respective individual pathways. The research presents one of the potential advantages of salicyl alcohol release by strains such as Rahnella, and how phenolic glycosides could be involved in attracting multiple types of bacteria into the Populus microbiome.

16.
J Vis Exp ; (197)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37677009

RESUMO

The delivery of biomolecules and impermeable dyes to intact plants is a major challenge. Nanomaterials are up-and-coming tools for the delivery of DNA to plants. As exciting as these new tools are, they have yet to be widely applied. Nanomaterials fabricated on rigid substrate (backing) are particularly difficult to successfully apply to curved plant structures. This study describes the process for microfabricating vertically aligned carbon nanofiber arrays and transferring them from a rigid to a flexible substrate. We detail and demonstrate how these fibers (on either rigid or flexible substrates) can be used for transient transformation or dye (e.g., fluorescein) delivery to plants. We show how VACNFs can be transferred from rigid silicon substrate to a flexible SU-8 epoxy substrate to form flexible VACNF arrays. To overcome the hydrophobic nature of SU-8, fibers in the flexible film were coated with a thin silicon oxide layer (2-3 nm). To use these fibers for delivery to curved plant organs, we deposit a 1 µL droplet of dye or DNA solution on the fiber side of VACNF films, wait 10 min, place the films on the plant organ and employ a swab with a rolling motion to drive fibers into plant cells. With this method, we have achieved dye and DNA delivery in plant organs with curved surfaces.


Assuntos
Nanofibras , Nanoestruturas , Filmes Cinematográficos , Carbono , Corantes
17.
Mol Plant Microbe Interact ; 25(6): 765-78, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22375709

RESUMO

Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.


Assuntos
Arabidopsis/classificação , Arabidopsis/microbiologia , Fotossíntese/fisiologia , Doenças das Plantas/imunologia , Pseudomonas fluorescens/fisiologia , Arabidopsis/metabolismo , Sinalização do Cálcio , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Interações Hospedeiro-Patógeno , Filogenia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo
18.
Langmuir ; 28(5): 2727-35, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22216981

RESUMO

Due to their unique antimicrobial properties silver nanocrystallites have garnered substantial attention and are used extensively for biomedical applications as an additive to wound dressings, surgical instruments and bone substitute materials. They are also released into unintended locations such as the environment or biosphere. Therefore it is imperative to understand the potential interactions, fate and transport of nanoparticles with environmental biotic systems. Numerous factors including the composition, size, shape, surface charge, and capping molecule of nanoparticles are known to influence cell cytotoxicity. Our results demonstrate that the physical/chemical properties of the silver nanoparticles including surface charge, differential binding and aggregation potential, which are influenced by the surface coatings, are a major determining factor in eliciting cytotoxicity and in dictating potential cellular interactions. In the present investigation, silver nanocrystallites with nearly uniform size and shape distribution but with different surface coatings, imparting overall high negativity to high positivity, were synthesized. These nanoparticles included poly(diallyldimethylammonium) chloride-Ag, biogenic-Ag, colloidal-Ag (uncoated), and oleate-Ag with zeta potentials +45 ± 5, -12 ± 2, -42 ± 5, and -45 ± 5 mV, respectively; the particles were purified and thoroughly characterized so as to avoid false cytotoxicity interpretations. A systematic investigation on the cytotoxic effects, cellular response, and membrane damage caused by these four different silver nanoparticles was carried out using multiple toxicity measurements on mouse macrophage (RAW-264.7) and lung epithelial (C-10) cell lines. Our results clearly indicate that the cytotoxicity was dependent on various factors such as surface charge and coating materials used in the synthesis, particle aggregation, and the cell-type for the different silver nanoparticles that were investigated. Poly(diallyldimethylammonium)-coated Ag nanoparticles were found to be the most toxic, followed by biogenic-Ag and oleate-Ag nanoparticles, whereas uncoated or colloidal silver nanoparticles were found to be the least toxic to both macrophage and lung epithelial cells. Also, based on our cytotoxicity interpretations, lung epithelial cells were found to be more resistant to the silver nanoparticles than the macrophage cells, regardless of the surface coating.


Assuntos
Células Epiteliais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/farmacologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Camundongos , Tamanho da Partícula , Prata/química , Relação Estrutura-Atividade , Propriedades de Superfície
19.
Biofilm ; 4: 100088, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36303845

RESUMO

Conditions affecting biofilm formation differ among bacterial species and this presents a challenge to studying biofilms in the lab. This work leverages functionalized silanes to control surface chemistry in the study of early biofilm propagation, quantified with a semi-automated image processing algorithm. These methods support the study of Pantoea sp. YR343, a gram-negative bacterium isolated from the poplar rhizosphere. We found that Pantoea sp. YR343 does not readily attach to hydrophilic surfaces but will form biofilms with a "honeycomb" morphology on hydrophobic surfaces. Our image processing algorithm described here quantified the evolution of the honeycomb morphology over time, and found the propagation to display a logarithmic behavior. This methodology was repeated with a flagella-deficient fliR mutant of Pantoea sp. YR343 which resulted in reduced surface attachment. Quantifiable differences between Pantoea WT and ΔfliR biofilm morphologies were captured by the image processing algorithm, further demonstrating the insight gained from these methods.

20.
Front Plant Sci ; 13: 1051340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507425

RESUMO

Transient transformation in plants is a useful process for evaluating gene function. However, there is a scarcity of minimally perturbing methods for gene delivery that can be used on multiple organs, plant species, and non-excised tissues. We pioneered and demonstrated the use of vertically aligned carbon nanofiber (VACNF) arrays to efficiently perform transient transformation of different tissues with DNA constructs in multiple plant species. The VACNFs permeabilize plant tissue transiently to allow molecules into cells without causing a detectable stress response. We successfully delivered DNA into leaves, roots and fruit of five plant species (Arabidopsis, poplar, lettuce, Nicotiana benthamiana, and tomato) and confirmed accumulation of the encoded fluorescent proteins by confocal microscopy. Using this system, it is possible to transiently transform plant cells with both small and large plasmids. The method is successful for species recalcitrant to Agrobacterium-mediated transformation. VACNFs provide simple, reliable means of DNA delivery into a variety of plant organs and species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA