Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Anal Bioanal Chem ; 416(1): 37-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37843549

RESUMO

The human volatilome comprises a vast mixture of volatile emissions produced by the human body and its microbiomes. Following infection, the human volatilome undergoes significant shifts, and presents a unique medium for non-invasive biomarker discovery. In this review, we examine how the onset of infection impacts the production of volatile metabolites that reflects dysbiosis by pathogenic microbes. We describe key analytical workflows applied across both microbial and clinical volatilomics and emphasize the value in linking microbial studies to clinical investigations to robustly elucidate the metabolic species and pathways leading to the observed volatile signatures. We review the current state of the art across microbial and clinical volatilomics, outlining common objectives and successes of microbial-clinical volatilomic workflows. Finally, we propose key challenges, as well as our perspectives on emerging opportunities for developing clinically useful and targeted workflows that could significantly enhance and expedite current practices in infection diagnosis and monitoring.


Assuntos
Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise
2.
Langmuir ; 39(23): 8100-8108, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37235552

RESUMO

Phenylboronic acids (BAs) are important synthetic receptors that bind reversibly to cis-diols enabling their use in molecular sensing. When conjugated to magnetic iron oxide nanoparticles, BAs have potential for application in separations and enrichment. Realizing this will require a new understanding of their inherent binding modes and measurement of their binding capacity and their stability in/extractability from complex environments. In this work, 3-aminophenylboronic acid was functionalized to superparamagnetic iron oxide nanoparticles (MNPs, core diameter 8.9 nm) to provide stable aqueous suspensions of functionalized particles (BA-MNPs). The progress of sugar binding and its impact on BA-MNP colloidal stability were monitored through the pH-dependence of hydrodynamic size and zeta potential during incubation with a range of saccharides. This provided the first direct observation of boronate ionization pKa in grafted BA, which in the absence of sugar shifted to a slightly more basic pH than free BA. On exposure to sugar solutions under MNP-limiting conditions, pKa moved progressively to lower pH as maximum capacity was gradually attained. The pKa shift is shown to be greater for sugars with greater BA binding affinity, and on-particle sugar exchange effects were inferred. Colloidal dispersion of BA-MNPs after binding was shown for all sugars at all pHs studied, which enabled facile magnetic extraction of glucose from agarose and cultured extracellular matrix expanded in serum-free media. Bound glucose, quantified following magnetophoretic capture, was found to be proportional to the solution glucose content under glucose-limiting conditions expected for the application. The implications for the development of MNP-immobilized ligands for selective magnetic biomarker capture and quantitation from the extracellular environment are discussed.


Assuntos
Nanopartículas de Magnetita , Açúcares , Carboidratos , Glucose
3.
Sensors (Basel) ; 23(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139506

RESUMO

The rapid expansion of 3D printing technologies has led to increased utilization in various industries and has also become pervasive in the home environment. Although the benefits are well acknowledged, concerns have arisen regarding potential health and safety hazards associated with emissions of volatile organic compounds (VOCs) and particulates during the 3D printing process. The home environment is particularly hazardous given the lack of health and safety awareness of the typical home user. This study aims to assess the safety aspects of 3D printing of PLA and ABS filaments by investigating emissions of VOCs and particulates, characterizing their chemical and physical profiles, and evaluating potential health risks. Gas chromatography-mass spectrometry (GC-MS) was employed to profile VOC emissions, while a particle analyzer (WIBS) was used to quantify and characterize particulate emissions. Our research highlights that 3D printing processes release a wide range of VOCs, including straight and branched alkanes, benzenes, and aldehydes. Emission profiles depend on filament type but also, importantly, the brand of filament. The size, shape, and fluorescent characteristics of particle emissions were characterized for PLA-based printing emissions and found to vary depending on the filament employed. This is the first 3D printing study employing WIBS for particulate characterization, and distinct sizes and shape profiles that differ from other ambient WIBS studies were observed. The findings emphasize the importance of implementing safety measures in all 3D printing environments, including the home, such as improved ventilation, thermoplastic material, and brand selection. Additionally, our research highlights the need for further regulatory guidelines to ensure the safe use of 3D printing technologies, particularly in the home setting.

4.
Sensors (Basel) ; 21(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067219

RESUMO

Consumer-level 3D printers are becoming increasingly prevalent in home settings. However, research shows that printing with these desktop 3D printers can impact indoor air quality (IAQ). This study examined particulate matter (PM) emissions generated by 3D printers in an indoor domestic setting. Print filament type, brand, and color were investigated and shown to all have significant impacts on the PM emission profiles over time. For example, emission rates were observed to vary by up to 150-fold, depending on the brand of a specific filament being used. Various printer settings (e.g., fan speed, infill density, extruder temperature) were also investigated. This study identifies that high levels of PM are triggered by the filament heating process and that accessible, user-controlled print settings can be used to modulate the PM emission from the 3D printing process. Considering these findings, a low-cost home IAQ sensor was evaluated as a potential means to enable a home user to monitor PM emissions from their 3D printing activities. This sensing approach was demonstrated to detect the timepoint where the onset of PM emission from a 3D print occurs. Therefore, these low-cost sensors could serve to inform the user when PM levels in the home become elevated significantly on account of this activity and furthermore, can indicate the time at which PM levels return to baseline after the printing process and/or after adding ventilation. By deploying such sensors at home, domestic users of 3D printers can assess the impact of filament type, color, and brand that they utilize on PM emissions, as well as be informed of how their selected print settings can impact their PM exposure levels.

5.
Molecules ; 26(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34576972

RESUMO

Electrochemical stripping techniques are interesting candidates for carrying out onsite speciation of environmentally relevant trace metals due to the existing low-cost portable instrumentation available and the low detection limits that can be achieved. In this work, we describe the initial analytical technique method development by quantifying the total metal concentrations using Stripping Chronopotentiometry (SCP). Carbon paste screen-printed electrodes were modified with thin films of mercury and used to quantify sub-nanomolar concentrations of lead and cadmium and sub-micromolar concentrations of zinc in river water. Low detection limits of 0.06 nM for Pb(II) and 0.04 nM for Cd(II) were obtained by the standard addition method using a SCP deposition time of 180 s. The SCP results obtained for Pb(II) and Cd(II) agreed with those of inductively coupled plasma mass spectrometry (ICP-MS). The coupling of SCP with screen-printed electrodes opens up excellent potential for the development of onsite speciation of trace metals. Due to the low analysis throughput obtained for the standard addition method, we also propose a new, more rapid screening Cd(II) internal standard methodology to significantly increase the number of samples that can be analyzed per day.

6.
Analyst ; 144(8): 2827-2832, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30887969

RESUMO

This work reports on a low cost microfluidic electronic tongue (e-tongue) made with carbon interdigitated electrodes, printed on paper, and coated with boronic acid-containing hydrogels. Using capacitance measurements, the e-tongue was capable of distinguishing between different types of sugars (e.g. glucose, fructose and sucrose), in addition to distinguishing between commercial brands of apple juice using a small volume of sample (6 µL). The channels of the microfluidic e-tongue were made using a wax printer, and were modified with hydrogels containing acrylamide copolymerized with 5 or 20 mol% 3-(acrylamido) phenyl boronic acid (Am-PBA), or a crosslinked homopolymeric hydrogel based on N-(2-boronobenzyl)-2-hydroxy-N,N-dimethylethan-1-aminium-3-sulfopropyl acrylate (DMA-PBA). Such hydrogels, containing a phenyl boronic acid (PBA) moiety, can bind saccharides. Combining various hydrogels of this nature in an e-tongue device enabled discrimination between apple juices, which are known to contain higher amounts of fructose compared to glucose or sucrose. Changes in capacitance were captured with impedance spectroscopy in the frequency range from 0.1 to 10 MHz for solutions with varying concentrations of glucose, fructose and sucrose (from 0 to 0.056 g mL-1). The capacitance data were treated with Principal Component Analysis (PCA) and Interactive Document Map (IDMAP), which then correlated overall sugar content from different brands of apple juice. This low-cost, easy-to-use, disposable e-tongue offers great potential in the routine analysis of food and beverages, while offering comparative performance to alternatives in the literature.

7.
J Sep Sci ; 41(16): 3224-3231, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30010238

RESUMO

A miniaturized, flexible, and low-cost capillary ion chromatography system has been developed for anion analysis in water. The ion chromatography has an open platform, modular design, and allows for ease of modification. The assembled platform weighs ca. 0.6 kg and is 25 × 25 cm in size. Isocratic separation of common anions (F- , Cl- , NO2- , Br- , and NO3- ) could be achieved in under 15 min using sodium benzoate eluent at a flow rate of 3 µL/min, a packed capillary column (0.150 × 150 mm) containing Waters IC-Pak 10 µm anion exchange resin, and light-emitting diode based indirect UV detection. Several low UV light-emitting diodes were assessed in terms of sensitivity, including a new 235 nm light-emitting diode, however, the highest sensitivity was demonstrated using a 255 nm light-emitting diode. Linear calibration ranges applicable to typical natural water analysis were obtained. For retention time and peak area repeatability, relative standard deviation values ranged from 0.60-0.95 and 1.95-3.53%, respectively. Several water samples were analysed and accuracy (recovery) was demonstrated through analysis of a prepared mixed anion standard. Relative errors of -0.36, -1.25, -0.80, and -0.76% were obtained for fluoride, chloride, nitrite, and nitrate, respectively.

8.
Anal Chem ; 89(14): 7447-7454, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28640594

RESUMO

Organic and printed electronics integration has the potential to revolutionize many technologies, including biomedical diagnostics. This work demonstrates the successful integration of multiple printed electronic functionalities into a single device capable of the measurement of hydrogen peroxide and total cholesterol. The single-use device employed printed electrochemical sensors for hydrogen peroxide electroreduction integrated with printed electrochromic display and battery. The system was driven by a conventional electronic circuit designed to illustrate the complete integration of silicon integrated circuits via pick and place or using organic electronic circuits. The device was capable of measuring 8 µL samples of both hydrogen peroxide (0-5 mM, 2.72 × 10-6 A·mM-1) and total cholesterol in serum from 0 to 9 mM (1.34 × 10-8 A·mM-1, r2 = 0.99, RSD < 10%, n = 3), and the result was output on a semiquantitative linear bar display. The device could operate for 10 min via a printed battery, and display the result for many hours or days. A mobile phone "app" was also capable of reading the test result and transmitting this to a remote health care provider. Such a technology could allow improved management of conditions such as hypercholesterolemia.


Assuntos
Tecnologia Biomédica , Técnicas Eletroquímicas , Eletrônica , Impressão , Colesterol/sangue , Fontes de Energia Elétrica , Eletrodos , Humanos , Peróxido de Hidrogênio/análise
9.
Exp Dermatol ; 26(10): 919-925, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28370710

RESUMO

Volatile organic compounds emitted by human skin were sampled before and after acute barrier disruption of the volar forearm to investigate the significance of this approach to skin physiology research. A small wearable housing integrating a solid-phase micro-extraction fibre permitting rapid enclosed headspace sampling of human skin volatiles is presented, enabling non-invasive sample collection in 15 minutes, in a comfortable wearable format. Gas chromatography-mass spectrometry was utilised to separate and identify the volatile metabolites. A total of 37 compounds were identified, with aldehydes (hexanal, nonanal, decanal), acids (nonanoic, decanoic, dodecanoic, tetradecanoic and pentadecanoic acids) and hydrocarbons (squalane, squalene) predominant within the chemical profile. Acute barrier disruption was achieved through tape stripping (TS) of the stratum corneum to determine the impact on the volatile signature. Principle component analysis demonstrated there to be a discriminating volatile signature before and after TS. The dysregulation of significant features was examined. Several compounds derived from sebaceous components and their oxidation products were altered following barrier disruption, including squalane, squalene, octanal and nonanal. The upregulation of glycine was also observed, which may indicate a perturbation to the skin's natural moisturising factor production. TS impacted the hydro-lipid film that functions within the skin barrier, resulting in a differing volatile signature from affected skin. This provides a valuable non-invasive approach for scientific and clinical studies in dermatology, particularly around dermatological disorders associated with compromised barrier function.


Assuntos
Epiderme/química , Epiderme/fisiologia , Microextração em Fase Sólida/instrumentação , Compostos Orgânicos Voláteis/análise , Adulto , Epiderme/lesões , Feminino , Antebraço , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Análise de Componente Principal , Adulto Jovem
10.
Analyst ; 140(9): 3003-11, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25768307

RESUMO

A pH-responsive hydrogel composed of an aliphatic diamine cross-linked with polyethylene glycol diglycidyl ether (PEGDGE) using a single, rapid polymerisation step has been used to detect glucose by entrapping glucose oxidase (GOx) within its cationic network. The swelling response of hydrogel disks on exposure to glucose were optimised through variation of factors including the cross-linking density of the network, GOx loading and the addition of catalase. Hydrogel-modified carbon cloth electrodes were also prepared and characterised using voltammetric and impedimetric techniques. Non-faradaic electrochemical impedance spectroscopy (EIS) and gravimetry were both employed to track the swelling response of the gels quantitatively. The clear potential of utilising impedance to transduce hydrogel swelling was demonstrated where a linear decrease in gel resistance (Rgel) corresponding to the swelling response was observed in the range 1 to 100 µM. A dramatic increase in the limit of detection of six orders of magnitude over the gravimetric measurement was achieved (from 0.33 mM to 0.08 µM). This increased sensitivity, coupled with the textile-based electrode substrate approach opens the potential applicability of this system for monitoring glucose concentration via the skin by sweat or interstitial fluid (ISF).


Assuntos
Técnicas Biossensoriais/instrumentação , Glucose/análise , Hidrogéis/química , Espectroscopia Dielétrica , Impedância Elétrica , Enzimas Imobilizadas/química , Desenho de Equipamento , Glucose Oxidase/química , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Transdutores
11.
J Am Soc Mass Spectrom ; 35(3): 421-432, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38326105

RESUMO

Skin volatile emissions offer a noninvasive insight into metabolic activity within the body as well as the skin microbiome and specific volatile compounds have been shown to correlate with age, albeit only in a few small studies. Building on this, here skin volatiles were collected and analyzed in a healthy participant study (n = 60) using a robust headspace-solid phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) workflow. Following processing, 18 identified compounds were deemed suitable for this study. These were classified according to gender influences and their correlations with age were investigated. Finally, 6 volatiles (of both endogenous and exogenous origin) were identified as significantly changing in abundance with participant age (p < 0.1). The potential origins of these dysregulations are discussed. Multiple linear regression (MLR) analysis was employed to model age based on these significant volatiles as independent variables, along with gender. Our analysis shows that skin volatiles show a strong predictive ability for age (explained variance of 68%), stronger than other biochemical measures collected in this study (skin surface pH, water content) which are understood to vary with chronological age. Overall, this work provides new insights into the impact of aging on the skin volatile profiles which comprises both endogenously and exogenously derived volatile compounds. It goes toward demonstrating the biological significance of skin volatiles and will help pave the way for more rigorous consideration of the healthy "baseline" skin volatile profile in volatilomics-based health diagnostics development going forward.


Assuntos
Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Humanos , Análise Multivariada , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
12.
Talanta ; 258: 124434, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940572

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are highly toxic pollutants of significant concern as they are being detected in water, air, fish and soil. They are extremely persistent and accumulate in plant and animal tissues. Traditional methods of detection and removal of these substances use specialised instrumentation and require a trained technical resource for operation. Molecularly imprinted polymers (MIPs), polymeric materials with predetermined selectivity for a target molecule, have recently begun to be exploited in technologies for the selective removal and monitoring of PFAS in environmental waters. This review offers a comprehensive overview of recent developments in MIPs, both as adsorbents for PFAS removal and sensors that selectively detect PFAS at environmentally-relevant concentrations. PFAS-MIP adsorbents are classified according to their method of preparation (e.g., bulk or precipitation polymerization, surface imprinting), while PFAS-MIP sensing materials are described and discussed according to the transduction methods used (e.g., electrochemical, optical). This review aims to comprehensively discuss the PFAS-MIP research field. The efficacy and challenges facing the different applications of these materials in environmental water applications are discussed, as well as a perspective on challenges for this field that need to be overcome before exploitation of the technology can be fully realised.

13.
Metabolites ; 12(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35629935

RESUMO

Candida parapsiliosis is a prevalent neonatal pathogen that attains its virulence through its strain-specific ability to form biofilms. The use of volatilomics, the profiling of volatile metabolites from microbes is a non-invasive, simple way to identify and classify microbes; it has shown great potential for pathogen identification. Although C. parapsiliosis is one of the most common clinical fungal pathogens, its volatilome has never been characterised. In this study, planktonic volatilomes of ten clinical strains of C. parapsilosis were analysed, along with a single strain of Candida albicans. Headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry were employed to analyse the samples. Species-, strain-, and media- influences on the fungal volatilomes were investigated. Twenty-four unique metabolites from the examined Candida spp. (22 from C. albicans; 18 from C. parapsilosis) were included in this study. Chemical classes detected across the samples included alcohols, fatty acid esters, acetates, thiols, sesquiterpenes, and nitrogen-containing compounds. C. albicans volatilomes were most clearly discriminated from C. parapsilosis based on the detection of unique sesquiterpene compounds. The effect of biofilm formation on the C. parapsilosis volatilomes was investigated for the first time by comparing volatilomes of a biofilm-positive strain and a biofilm-negative strain over time (0-48 h) using a novel sampling approach. Volatilomic shifts in the profiles of alcohols, ketones, acids, and acetates were observed specifically in the biofilm-forming samples and attributed to biofilm maturation. This study highlights species-specificity of Candida volatilomes, and also marks the clinical potential for volatilomics for non-invasively detecting fungal pathogens. Additionally, the range of biofilm-specificity across microbial volatilomes is potentially far-reaching, and therefore characterising these volatilomic changes in pathogenic fungal and bacterial biofilms could lead to novel opportunities for detecting severe infections early.

14.
Front Microbiol ; 12: 693075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721314

RESUMO

Microbial volatilomics is a rapidly growing field of study and has shown great potential for applications in food, farming, and clinical sectors in the future. Due to the varying experimental methods and growth conditions employed in microbial volatilomic studies as well as strain-dependent volatilomic differences, there is limited knowledge regarding the stability of microbial volatilomes. Consequently, cross-study comparisons and validation of results and data can be challenging. In this study, we investigated the stability of the volatilomes of multiple strains of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli across three frequently used nutrient-rich growth media. Volatilomic stability was assessed based on media-, time- and strain-dependent variation across the examined bacterial volatilomes. Strain-level specificity of the observed volatilomes of E. coli and P. aeruginosa strains was further investigated by comparing the emission of selected compounds at varying stages of cell growth. Headspace solid phase microextraction (HS-SPME) sampling coupled with gas chromatography mass spectrometry (GC-MS) was used to analyze the volatilome of each strain. The whole volatilomes of the examined strains demonstrate a high degree of stability across the three examined growth media. At the compound-level, media dependent differences were observed particularly when comparing the volatilomes obtained in glucose-containing brain heart infusion (BHI) and tryptone soy broth (TSB) growth media with the volatilomes obtained in glucose-free Lysogeny broth (LB) media. These glucose-dependent volatilomic differences were primarily seen in the emission of primary metabolites such as alcohols, ketones, and acids. Strain-level differences in the emission of specific compounds in E. coli and P. aeruginosa samples were also observed across the media. These strain-level volatilomic differences were also observed across varying phases of growth of each strain, therefore confirming that these strains had varying core and accessory volatilomes. Our results demonstrate that, at the species-level, the examined bacteria have a core volatilome that exhibits a high-degree of stability across frequently-used growth media. Media-dependent differences in microbial volatilomes offer valuable insights into identifying the cellular origin of individual metabolites. The observed differences in the core and accessory volatilomes of the examined strains illustrate the complexity of microbial volatilomics as a study while also highlighting the need for more strain-level investigations to ultimately elucidate the whole volatilomic capabilities of microbial species in the future.

15.
ACS Omega ; 6(11): 7394-7401, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778252

RESUMO

Measurement of cooking-associated air pollution indoors is an integral part of exposure monitoring and human health risk assessment. There is a need for easy to use, fast, and economical detection systems to quantify the various emissions from different sources in the home. Addressing this challenge, a colorimetric sensor array (CSA) is reported as a new method to characterize volatile organic compounds produced from cooking, a major contributor to indoor air pollution. The sensor array is composed of pH indicators and aniline dyes from classical spot tests, which enabled molecular recognition of a variety of aldehydes, ketones, and carboxylic acids as demonstrated by hierarchical clustering and principal component analyses. To demonstrate the concept, these CSAs were employed for differentiation of emissions from heated cooking oils (sunflower, rapeseed, olive, and groundnut oils). Sensor results were validated by gas chromatography-mass spectrometry analysis, highlighting the potential of the sensor array for evaluating cooking emissions as a source of indoor air pollution.

16.
PLoS One ; 16(10): e0258281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34614030

RESUMO

Indoor air quality monitoring as it relates to the domestic setting is an integral part of human exposure monitoring and health risk assessment. Hence there is a great need for easy to use, fast and economical indoor air quality sensors to monitor the volatile organic compound composition of the air which is known to be significantly perturbed by the various source emissions from activities in the home. To meet this need, paper-based colorimetric sensor arrays were deployed as volatile organic compound detectors in a field study aiming to understand which activities elicit responses from these sensor arrays in household settings. The sensor array itself is composed of pH indicators and aniline dyes that enable molecular recognition of carboxylic acids, amines and carbonyl-containing compounds. The sensor arrays were initially deployed in different rooms in a single household having different occupant activity types and levels. Sensor responses were shown to differ for different room settings on the basis of occupancy levels and the nature of the room emission sources. Sensor responses relating to specific activities such as cooking, cleaning, office work, etc were noted in the temporal response. Subsequently, the colorimetric sensor arrays were deployed in a broader study across 9 different households and, using multivariate analysis, the sensor responses were shown to correlate strongly with household occupant activity and year of house build. Overall, this study demonstrates the significant potential for this type of simple approach to indoor air pollution monitoring in residential environments.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Colorimetria , Compostos Orgânicos Voláteis/análise , Características da Família , Análise de Componente Principal
17.
Nanoscale ; 13(2): 1365-1366, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33406175

RESUMO

Correction for 'Electrostatically modulated magnetophoretic transport of functionalised iron-oxide nanoparticles through hydrated networks' by Stephen Lyons et al., Nanoscale, 2020, 12, 10550-10558, DOI: 10.1039/D0NR01602K.

18.
J Breath Res ; 15(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33765666

RESUMO

Volatile organic compounds (VOCs) emitted from human skin are of great interest in general in research fields including disease diagnostics and comprise various compound classes including acids, alcohols, ketones and aldehydes. The objective of this research is to investigate the volatile fatty acid (VFA) emission as recovered from healthy participant skin VOC samples and to characterise its association with skin surface acidity. VOC sampling was performed via headspace-solid phase microextraction with analysis via gas chromatography-mass spectrometry. Several VFAs were recovered from participants, grouped based on gender and site (female forehead, female forearm, male forearm). Saturated VFAs (C9, C12, C14, C15, C16) and the unsaturated VFA C16:1 (recovered only from the female forehead) were considered for this study. VFA compositions and abundances are discussed in the context of body site and corresponding gland type and distribution, and their quantitative association with skin acidity investigated. Normalised chromatographic peak areas of the recovered VFAs were found to linearly correlate with hydrogen ion concentration measured at each of the different sites considered and is the first report to our knowledge to demonstrate such an association. Our observations are explained in terms of the free fatty acid content at the skin surface which is well-established as being a major contributor to skin surface acidity. Furthermore, it is interesting to consider that these VFA emissions from skin, governed by equilibrium vapour pressures exhibited at the skin surface, will be dependent on skin pH. It is proposed that these pH-modulated equilibrium vapour pressures of the acids could be resulting in an enhanced VFA emission sensitivity with respect to skin surface pH. To translate our observations made here for future wearable biodiagnostic applications, the measurement of skin surface pH based on the volatile emission was demonstrated using a pH indicator dye in the form of a planar colorimetric sensor, which was incorporated into a wearable platform and worn above the palm surface. As acidic skin surface pH is required for optimal skin barrier function and cutaneous antimicrobial defence, it is envisaged that these colorimetric volatile acid sensors could be deployed in robust wearable formats for monitoring health and disease applications in the future.


Assuntos
Testes Respiratórios , Compostos Orgânicos Voláteis , Ácidos Graxos Voláteis/análise , Feminino , Voluntários Saudáveis , Humanos , Masculino , Projetos Piloto , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
19.
Analyst ; 135(5): 845-67, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20419231

RESUMO

Advanced printing and deposition methodologies are revolutionising the way biological molecules are deposited and leading to changes in the mass production of biosensors and biodevices. This revolution is being delivered principally through adaptations of printing technologies to device fabrication, increasing throughputs, decreasing feature sizes and driving production costs downwards. This review looks at several of the most relevant deposition and patterning methodologies that are emerging, either for their high production yield, their ability to reach micro- and nano-dimensions, or both. We look at inkjet, screen, microcontact, gravure and flexographic printing as well as lithographies such as scanning probe, photo- and e-beam lithographies and laser printing. We also take a look at the emerging technique of plasma modification and assess the usefulness of these for the deposition of biomolecules and other materials associated with biodevice fabrication.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Emulsões/química , Enzimas/química , Humanos , Técnicas Analíticas Microfluídicas , Nanotecnologia
20.
Sci Rep ; 10(1): 17971, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087843

RESUMO

The detection of volatile organic compounds (VOC) emitted by pathogenic bacteria has been proposed as a potential non-invasive approach for characterising various infectious diseases as well as wound infections. Studying microbial VOC profiles in vitro allows the mechanisms governing VOC production and the cellular origin of VOCs to be deduced. However, inter-study comparisons of microbial VOC data remains a challenge due to the variation in instrumental and growth parameters across studies. In this work, multiple strains of pathogenic and commensal cutaneous bacteria were analysed using headspace solid phase micro-extraction coupled with gas chromatography-mass spectrometry. A kinetic study was also carried out to assess the relationship between bacterial VOC profiles and the growth phase of cells. Comprehensive bacterial VOC profiles were successfully discriminated at the species-level, while strain-level variation was only observed in specific species and to a small degree. Temporal emission kinetics showed that the emission of particular compound groups were proportional to the respective growth phase for individual S. aureus and P. aeruginosa samples. Standardised experimental workflows are needed to improve comparability across studies and ultimately elevate the field of microbial VOC profiling. Our results build on and support previous literature and demonstrate that comprehensive discriminative results can be achieved using simple experimental and data analysis workflows.


Assuntos
Bactérias/metabolismo , Bactérias/patogenicidade , Pele/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Infecção dos Ferimentos/microbiologia , Bactérias/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Extração em Fase Sólida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA