Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(13): 6051-6066, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501387

RESUMO

In this study, a chiral [Cu(l-proline)2] complex-modified Fe3O4@SiO2@UiO-66-NH2(Zr) metal-organic framework [Fe3O4@SiO2@UiO-66-NH-Cu(l-proline)2] via multifunctionalization strategies was designed and synthesized. One simple approach to chiralize an achiral MOF-structure that cannot be directly chiralized using a chiral secondary agent like 4-hydroxy-l-proline. Therefore, this chiral catalyst was synthesized with a simple and multistep method. Accordingly, Fe3O4@SiO2@UiO-66-NH2 has been synthesized via Fe3O4 modification with tetraethyl orthosilicate and subsequently with ZrCl4 and 2-aminoterephthalic acid. The presence of the silica layer helps to stabilize the Fe3O4 core, while the bonding between Zr4+ and the -OH groups in the silica layer promotes the development of Zr-MOFs on the Fe3O4 surface, and then the surfaces of the synthesized magnetic MOFs composite are functionalized with 1,2-dichloroethane and Cu(II) complex with 4-hydroxy-l-proline, [Cu(l-proline)2] to afford the magnetically chiral nanocatalyst. Multiple techniques were employed to characterize this magnetically chiral nanocatalyst such as Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), powder X-ray diffraction (PXRD), circular dichroism (CD), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), and Brunauer-Emmett-Teller (BET) analyses. Moreover, a magnetically chiral nanocatalyst shows the asymmetric CO2 fixation reaction under solvent-free conditions at 80 °C and in ethanol under reflux conditions with up to 99 and 98% ee, respectively. Furthermore, the reaction mechanism was illustrated concerning the total energy of the reactant, intermediates and product, and the structural parameters were analyzed.

2.
Inorg Chem ; 63(11): 5107-5119, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38452394

RESUMO

Direct removal of trivalent arsenic, As(III), arsenite, or H3AsO3, is a great challenge in accessing clean sources of water. Different methodologies and materials were applied in this regard, but among them, direct removal of As(III) species using a metal-organic framework (MOF)-based adsorbent shows a great deal of potential. Although some studies were conducted on As(III) removal using MOFs, studies of functional groups are still quite rare. For this purpose, three novel functionalized defective Zr-MOFs, using UiO-66 [Zr6(OH)4O4(BDC)6, where BDC2- = benzene-1,4-dicarboxylate], were fabricated to investigate the competitive or cooperative roles of the free -NH2 and/or -SH site in the removal of As(III). UiO-66 was functionalized with monocarboxylate linkers, including glycine (Gly, NH2-CH2-COOH), cysteine [Cys, SH(CH2)-NH2(CH)-COOH], and mercaptopropionic acid [Mer, SH-(CH2)2-COOH]. Gly@UiO-66, Cys@UiO-66, and Mer@UiO-66 were applied for the direct removal of As(III) species. Although Cys@UiO-66 is functionalized with both amine and thiol functional groups, Gly@UiO-66 has a higher adsorption capacity (301.4 mg g-1) with respect to As(III), which is among the best reported values. This is due to the fact that (1) the affinity of amine sites in Gly@UiO-66 for As(III) is higher than that of thiol sites in Mer@UiO-66 and (2) Cys@UiO-66 has a very small surface area compared to that of Gly@UiO-66. Mechanistic studies using X-ray photoelectron spectroscopy and vibrational spectroscopy reveal that not only the functionalization and chemical nature of the function but also other parameters such as the protonation-deprotonation mechanisms and chemical state of the function are other critical factors for designing a functional MOF-based adsorbent with high affinity for and maximum capacity with respect to the target analyte.

3.
Inorg Chem ; 63(5): 2327-2339, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38270093

RESUMO

As a hydrogen carrier and a vital component in fertilizer production, ammonia (NH3) is set to play a crucial role in the planet's future. While its industrial production feeds half of the global population, it uses fossil fuels and emits greenhouse gases. To tackle this issue, photocatalytic nitrogen fixation using visible light is emerging as an effective alternative method. This strategy avoids carbon dioxide (CO2) emissions and harnesses the largest share of sunlight. In this work, we successfully incorporated a 5-nitro isophthalic acid linker into MOF-808 to introduce structural defects and open metal sites. This has allowed modulation of the electronic structure of the MOF and effectively reduced the band gap energy from 3.8 to 2.6 eV. Combination with g-C3N4 enhanced further NH3 production, as these two materials possess similar band gap energies, and g-C3N4 has shown excellent performance for this reaction. The nitro groups serve as acceptors, and their integration into the MOF structure allowed effective interaction with the free electron pairs on N-(C)3 in the g-C3N4 network nodes. Based on DFT calculations, it was concluded that the adsorption of N2 molecules on open metal sites caused a decrease in their triple bond energy. The modified MOF-808 showed superior performance compared with the other MOFs studied in terms of N2 photoreduction under visible light. This design concept offers valuable information about how to engineer band gap energy in MOF structures and their combination with appropriate semiconductors for solar-powered photocatalytic reactions, such as N2 or CO2 photoreduction.

4.
Inorg Chem ; 63(12): 5552-5558, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38484385

RESUMO

Inducing, understanding, and controlling the flexibility in metal-organic frameworks (MOFs) are of utmost interest due to the potential applications of dynamic materials in gas-related technologies. Herein, we report the synthesis of two isostructural two-dimensional (2D) interweaving zinc(II) MOFs, TMU-27 [Zn(bpipa)(bdc)] and TMU-27-NH2 [Zn(bpipa)(NH2-bdc)], based on N,N'-bis-4-pyridyl-isophthalamide (bpipa) and 1,4-benzenedicarboxylate (bdc) or 2-amino-1,4-benzenedicarboxylate (NH2-bdc), respectively. These frameworks differ only by the substitution at the meta-position of their respective bdc groups: an H atom in TMU-27 vs an NH2 group in TMU-27-NH2. This difference strongly influences their respective responses to external stimuli, since we observed that the structure of TMU-27 changed due to desolvation and adsorption, whereas TMU-27-NH2 remained rigid. Using single-crystal X-ray diffraction and CO2-sorption measurements, we discovered that upon CO2 sorption, TMU-27 undergoes a transition from a closed-pore phase to an open-pore phase. In contrast, we attributed the rigidification in TMU-27-NH2 to intermolecular hydrogen bonding between interweaving layers, namely, between the H atoms from the bdc-amino groups and the O atoms from the bpipa-amide groups within these layers. Additionally, by using scanning electron microscopy to monitor the CO2 adsorption and desorption in TMU-27, we were able to establish a correlation between the crystal size of this MOF and its transformation pressure.

5.
Inorg Chem ; 63(17): 7631-7639, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38625102

RESUMO

Two novel MoO42--templated luminescent silver alkynyl nanoclusters with 20-nuclearity ([(MoO42-)@Ag20(C≡CtBu)8(Ph2PO2)7(tfa)2]·(tfa-) (1)) and 18-nuclearity ([(MoO42-)@Ag18(C≡CtBu)8(Ph2PO2)7]·(OH) (2)) (tfa = trifluoroacetate) were synthesized with the green light maximum emissions at 507 and 516 nm, respectively. The nanoclusters were investigated and characterized by single-crystal X-ray crystallography, electrospray ionization mass spectrum (ESI-MS), X-ray photoelectron spectroscopy, thermogravimetry (TG), photoluminescence (PL), ultraviolet-visible (UV-vis) spectroscopy, and density functional theory calculations (DFT). The two nanoclusters differ in their structure by a supplementary [Ag2(tfa)2] organometallic surface motif, which significantly participates in the frontier molecular orbitals of 1, resulting in similar bonding patterns but different optical properties between the two clusters. Indeed, both nanoclusters show strong temperature-dependent photoluminescence properties, which make them potential candidates in the fields of optical devices for further applications.

6.
J Mol Recognit ; 36(8): e3017, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37025015

RESUMO

The G-quadruplex planar-ligand complex is used to detect heavy metal cations such as Ag+ , Cu2+ , Pb2+ , Hg2+ , organic molecules, nucleic acids, and proteins. The interaction of the three planar porphyrins (L1), 5,10,15,20-tetrakis (1-ethyl-1-λ4 -pyridine-4-yl) porphyrin (L2), and 5,10,15,20-tetrakis (1-methyl-1-λ4 -pyridine-4-yl) porphyrin (L3), coming from the porphyrin family, with G-quadruplex obtained from human DNA telomeres in the presence of lithium, sodium, potassium, rubidium, cesium, magnesium, and calcium ions was studied by molecular dynamics simulation. When G-quadruplex containing divalent ions of magnesium and calcium interacts with L1, L2, and L3 ligands, the hydrogen bonds of the lower G-quadruplex sheet are more affected by ligands and the distance between guanines in the lower tetrad increases. In the case of G-quadruplex interactions containing monovalent ions with ligands, the hydrogen bond between the sheets does not follow a specific trend. For example, in the presence of lithium ions, the upper and middle sheets are more affected by ligands, while they are less affected by ligands in the presence of sodium. The binding pocket and the binding energy of the three ligands to the G-quadruplex were also obtained in the various systems. The results show that ligands make the G-quadruplex more stable through the penetration between the sheets and the interaction with the loops. Among the ligands mentioned, the interaction level of the ligand L2 is greater than the others. Our calculations are consistent with the previous experimental observations so that it can help to understand the molecular mechanism of porphyrin interaction and its derivatives with the G-quadruplex.


Assuntos
Quadruplex G , Porfirinas , Humanos , Porfirinas/metabolismo , Ligantes , Lítio , Cálcio , Magnésio , Cátions , Piridinas , Sódio
7.
Inorg Chem ; 62(8): 3498-3505, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36790180

RESUMO

Urea-functionalized MOFs with unique properties have recently been used as efficient platforms to conduct organocatalytic reactions. To gain more insight into the key factors which govern an efficient organocatalytic reaction in urea-MOFs, two different urea-containing 2D MOFs TMU-58 ([Zn(L1)(oba)].CH3CN) and TMU-83 ([Zn(L2)(oba)].DMF), where L1 = (1E,5E)-1,5-bis(1-(pyridine-4-ylethylidene)carbonohydrazide, L2 = (1E,5E)-1,5-bis(1-(pyridine-4-ylmethylene)carbonohydrazide, and oba = 4,4'-oxybisbenzoic acid, with abundant accessible active sites, were selected and examined in the methanolysis of styrene oxide. TMU-58 with the ability to form a two-point H-bond with different substrates revealed a high organocatalytic efficiency in the regioselective ring opening of styrene oxide. The catalytic activation of epoxide oxygen by the urea N-H functional sites, followed by the nucleophilic attack of methanol at the benzylic carbon led to the formation of 2-methoxy-2-phenylethanol as the major product. DFT calculations were also performed to investigate the acidic strength of the urea hydrogens in both TMU-58 and TMU-83 structures as a major factor to conduct an efficient catalytic reaction. The results indicated the more acidic nature of the urea hydrogens in TMU-83; however, its catalytic efficiency was remarkably reduced due to the inappropriate orientation of the active interaction sites within the framework revealing the importance of proper orientation of the urea hydrogens in conducting an efficient organocatalytic reaction. The current study provides a comparative study on the function-property relationship in 2D MOF assemblies which has not been explored so far.

8.
Inorg Chem ; 62(26): 10185-10192, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37338814

RESUMO

The metallophilic properties, spherical configuration, and flexible coordination of silver ions make them prone to create various coordination modes and structural features. Therefore, with the increase of the complexities of self-assembly, the effect of various synthetic conditions in the final structure of silver compounds becomes diverse and attractive. In this study, two new silver polyclusters, 16- and 21-nuclearity, protected by multiple ligands including alkynyl, trifluoroacetate, and diphenylphosphinate, were synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and Fourier transform infrared (FTIR) spectroscopy. The optical properties and thermal stability of the polyclusters were studied by solid-state ultraviolet-visible (UV-vis) absorption and solid UV-vis diffuse reflectance spectra and gravimetric analysis, respectively. The formation of the two polyclusters can be fine-controlled by simply adjusting the stoichiometric ratio of diphenylphosphinate ligands to silver precursors under the same synthetic condition, leading to the different coordination modes between ligands and Ag centers. This work shows a facile and template-free method to synthesize and control the silver polycluster assembly, encouraging further development of new polyclusters with the potential for various applications.

9.
Inorg Chem ; 62(1): 401-407, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36537348

RESUMO

The first mixed-valence nanocluster CuI/CuII with the highest percentage of CuII ions was synthesized by using 4-tert-butylcalix[4]arene (Calix4), with the formula DMF2⊂[(CO3)2-@CuII6CuI3(Calix4)3Cl2(DMF)5(H3O)]•DMF (1), as a photothermal nanocluster. Its structure was characterized using single-crystal X-ray diffraction, Fourier-transform infrared spectroscopy, and powder X-ray diffraction. In addition, the charge state and chemical composition of the nanocluster were determined using electrospray ionization spectrometry and X-ray photoelectron spectroscopy (XPS) spectrum. The results of the XPS and X-ray crystallography revealed that there are two independent CuII and CuI centers in nanocluster 1 with the relative abundances of 66.6 and 33.3% for CuII and CuI, respectively. The nanocluster contains three four-coordinated CuI ions with a square-planar geometry and six five-coordinated CuII ions with a square pyramid geometry. The nanocluster shows strong near-infrared optical absorption in the solid state and excellent photothermal conversion ability (the equilibrium temperature ∼78.2 °C) with the light absorption centers in 286-917 nm over previous reported pentanucleus CuI4CuII clusters and CuII compounds.

10.
Angew Chem Int Ed Engl ; 62(9): e202214707, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468543

RESUMO

Transition metal complexes are well-known homogeneous electrocatalysts. In this regard, metal-organic frameworks (MOFs) can be considered as an ensemble of transition metal complexes ordered in a periodic arrangement. In addition, MOFs have several additional positive structural features that make them suitable for electrocatalysis, including large surface area, high porosity, and high content of accessible transition metal with exchangeable coordination positions. The present review describes the current state in the use of MOFs as electrocatalysts, both as host of electroactive guests and their direct electrocatalytic activity, particularly in the case of bimetallic MOFs. The field of MOF-derived materials is purposely not covered, focusing on the direct use of MOFs or its composites as electrocatalysts. Special attention has been paid to present strategies to overcome their poor electrical conductivity and limited stability.

11.
Inorg Chem ; 61(20): 7820-7834, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35544681

RESUMO

Pore decoration of metal-organic frameworks (MOFs) with functional groups is a useful strategy to attain high selectivity toward specific analytes, especially in the presence of interfering molecules with similar structures and energy levels, through selective host-guest interactions. In this work, we applied a dihydrotetrazine-decorated MOF, TMU-34, with the formula [Zn(OBA)(H2DPT)0.5]n·DMF, where H2OBA is 4,4'-oxybis(benzoic acid) and H2DPT is 3,6-bis(pyridin-4-yl)-1,4-dihydro-1,2,4,5-tetrazine, for the highly selective detection of phenolic NACs, especially TNP (94% quenching efficiency, detection limit 8.1 × 10-6 M, KSV = 182663 mol L-1), in the presence of other substituted NACs especially -NH2-substituted NACs. Investigations reveal that the quenching mechanism is dominated by photoinduced MOF-to-TNP electron transfer through possible hydrogen-bonding interactions between the phenolic hydroxyl group of TNP and dihydrotetrazine functions of TMU-34. Despite extensive publications on the detection of TNP in the presence of other NACs, the significance of this work will be elucidated if attention is paid to the fact that TMU-34 is among the rare and highly selective MOF-based TNP sensors in the presence of -NH2-substituted NACs as the serious interferers.


Assuntos
Compostos Heterocíclicos , Estruturas Metalorgânicas , Luminescência , Estruturas Metalorgânicas/química , Picratos/química
12.
Inorg Chem ; 61(8): 3396-3405, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35157424

RESUMO

The development of cost-effective and efficient oxygen evolution reaction (OER) catalysts has found increasing popularity due to the sluggish kinetics of OER, which has hampered the H2 production by H2O electrolysis. In this study, Fe2Ni MIL-88 (denoted FeNi) was composited by reduced graphene oxide (rGO, denoted R). Owing to the high porosity and abundant active sites of bimetallic MOF, proper conductivity of rGO, and the synergistic impact of Ni and Fe, the optimal composite (R@FeNi (1:1)) offered remarkable OER activity in alkaline environments. The obtained composite was employed in the OER, which led to a low overpotential of 264 mV at a current density of 10 mA cm-2 with a Tafel slope of 62 mV dec-1. Also, the bimetallic Fe2Ni MIL-88 nanorods grown on rGO led to a reduction in the onset potential of the OER. These findings exceeded the results of standard IrO2-based catalysts; they are also comparable or even better than the previously reported MOF-based catalysts.

13.
Inorg Chem ; 61(48): 19134-19143, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36408879

RESUMO

Linker functionalization is a practical strategy to extend the applications of metal-organic frameworks (MOFs) in various fields. Here, this strategy is applied to synthesize a tetrazine-functionalized MOF [TMU-34(-2H), formulated [Zn(OBA) (DPT)0.5]·DMF; H2OBA and DPT are 4,4'-oxybis(benzoic acid) and 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine] for efficient photocatalytic synthesis of disulfides and benzimidazoles with maximum conversion after 90 and 120 min, respectively. The photocatalytic activity of TMU-34(-2H) originates from the electronic properties of tetrazine function, including absorption in the visible region and photogenerated redox activity. In the proposed mechanism, neutral tetrazine sites are excited upon visible-light irradiation. Then, photoexcited tetrazine sites accept one electron from the reactants leading to generation of tetrazine radical anions as electron mediator sites. Finally, the electrons transfer from the tetrazine radical anion sites to other substrates in the reaction. The results show that organic chromophores, such as tetrazine, are good candidates for extension of application of MOFs in visible-light photocatalysis.

14.
Inorg Chem ; 61(41): 16221-16227, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36194391

RESUMO

The solvent-assisted linker exchange (SALE) method was used to produce amino-functionalized yttrium-based UiO-66 [NH2UiO-66(Y)], which is not obtainable via a direct synthetic method. Remarkably, SALE not only produced relatively highly porous NH2UiO-66(Y) from completely non-porous 3,3-bpdc-Y but also changed the network topology from 8-connected bcu in 3,3-bpdc-Y to 12-connected fcu in NH2UiO-66(Y). Based on our knowledge, this is one of the rare cases where SALE changes the whole network topology of the resulting metal-organic framework. NH2UiO-66(Y) also showed promising ability for selective detection of Cu2+ at a low concentration.

15.
Inorg Chem ; 61(18): 6725-6732, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35477280

RESUMO

A new porous metal-organic framework, [Co (oba) (bpdh)]·(DMF) (TMU-63), containing accessible nitrogen-rich diazahexadiene groups was successfully prepared with the solvothermal assembly of 5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene (4-bpdh), 4,4'-oxybis(benzoic) acid (oba), and Co(II) ions. The combination of Lewis basic functional groups and porosity leads to high performance in CO2 adsorption and conversion in the cycloaddition reaction of epoxides under solvent-free conditions. To further enhance the catalytic efficiency of TMU-63, we introduced a highly acidic malonamide ligand into the structure via solvent-assisted ligand exchange (SALE) as a postsynthesis method. Incorporating different percentages of N1,N3-di(pyridine-4-yl) malonamide linker (4-dpm) into TMU-63 created a new porous structure. Powder X-ray diffraction (PXRD) and NMR spectroscopy confirmed that 4-bpdh was successfully replaced with 4-dpm in the daughter MOF, TMU-63S. The catalytic activity of both MOFs was confirmed by significant amounts of CO2 cycloaddition of epoxides under solvent-free conditions. The catalytic cycloaddition activities were found to be well-correlated with the Lewis base/Brønsted acid distributions of the materials examined in the TMU-63S series, showing that the concurrent presence of both acid and base sites was desirable for high catalytic activity. Furthermore, the heterogeneous catalysts could easily be separated out from the reaction mixtures and reused four times without loss of catalytic activity and with no structural deterioration.

16.
Inorg Chem ; 61(33): 13125-13132, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35946902

RESUMO

To study the influence of pore structural properties of metal-organic frameworks (MOFs) on drug adsorption and delivery, we synthesized two MOF termed TMU-6(RL1) {[Zn(oba)(RL1)0.5]n·(DMF)1.5} and TMU-21(RL2) {[Zn(oba)(RL2)0.5]n·(DMF)1.5} with amine basic N-donor pillars containing phenyl or naphthyl cores with various hydrophilic properties around the main center of the reaction. TG, IR, XPS, and PXRD analyses were used to extensively characterize the MOFs. The synthesized carriers showed high adsorption efficiency, stability, and controlled release. As an anticancer drug, Nimesulide (Nim) was adsorbed to MOFs using multiple adsorption mechanisms, such as Hostπ-πGuest interaction and HostN-H···OGuest hydrogen bonds. Moreover, Hirshfeld surface analysis showed when the benzene core was replaced with the naphthalene core, the percentage of intermolecular interactions of π···π and N···H by amine sites in TMU-21(RL2) decreased compared with TMU-6(RL1), while the percentage of these interactions with guest molecules increased. The results showed that changes in the hydrophobicity/hydrophilicity properties of MOFs would alter their ability to adsorb Nim in the pore of the frameworks. In vitro anticancer studies also showed that the cytotoxicity of Nim in MOFs@Nim composites against human cervical cancer cell line (HeLa cells) and human colon cancer cell line (HT-29 cells) is much higher than that of free Nim. Generally, based on the results, it can be said that the biological behavior of carriers can be regulated by adjusting the structure properties of MOFs.


Assuntos
Estruturas Metalorgânicas , Aminas , Sistemas de Liberação de Medicamentos/métodos , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia
17.
Inorg Chem ; 61(3): 1735-1744, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35001621

RESUMO

The orthorhombic phase of KNbO3 perovskite has been applied for nitrogen (N2) photoreduction to ammonia (NH3). However, this material suffers from a low surface area and low ammonia production efficiency under UV light irradiation. To eliminate these barriers, we used a metal-organic framework (MOF), named as TMU-5 ([Zn(OBA)(BPDH)0.5]n·1.5DMF, where H2OBA = 4,4'-oxybis(benzoic acid) and BPDH = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene), for the synthesis of the KNbO3@TMU-5 hybrid material. KNbO3@TMU-5 achieved a NH3 production rate of 39.9 µmol·L-1·h-1·g-1 upon UV light irradiation, as compared to 20.5 µmol·L-1·h-1·g-1 recorded for KNbO3 under similar experimental conditions. Using different characterization techniques especially gas adsorption, cyclic voltammetry, X-ray photoelectron spectroscopy, photocurrent measurements, and Fourier transform infrared spectroscopy, it has been found that the higher photoactivity of KNbO3@TMU-5 in ammonia production is due to its higher surface area, higher electron-hole separation efficiency, and higher density of negative charges on Nb sites. This work shows that hybridization of conventional semiconductors (SCs) with photoactive MOFs can improve the photoactivity of the SC@MOF hybrid material in different reactions, especially kinetically complex reactions like photoconversion of nitrogen to ammonia.

18.
Inorg Chem ; 61(42): 16693-16698, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36239444

RESUMO

The synthesis of nanoclusters from simple structural units is usually a challenging process because of the complexity and unpredictability of the self-assembly process of these types of compounds. Herein, two new neutral 19-nuclearity silver nanoclusters based on alkynyl ligands with the formulas [(CrO4)@Ag19(C≡CtBu)8(Ph2PO2)6(tfa)3(CH3OH)2] (1) and [(SO4)@Ag19(C≡CtBu)8(Ph2PO2)6(tfa)3(CH3OH)2] (2), in which tfa = trifluoroacetate, were synthesized, and their structures were investigated by single-crystal and powder X-ray diffraction, electrospray ionization mass spectrometry, elemental analyses, and Fourier transform infrared spectroscopy. The surface ligands of Ph2PO2H and trifluoroacetate were assembled through hydrogen bonding, metal-aromatic interactions, and coordination bonding around 19 silver atoms as the metal skeletons of the nanoclusters. Sulfate and chromate anions, as a template within the metal skeleton of clusters through bonding with silver atoms, stabilized the structure. In addition, the UV-vis absorption spectroscopy, luminescence properties, and thermal stability of the nanoclusters were investigated.

19.
Int J Cancer ; 149(3): 594-605, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33884608

RESUMO

Policymakers require estimates of the future number of cancer patients in order to allocate finite resources to cancer prevention, treatment and palliative care. We examine recent cancer incidence trends in Iran and present predicted incidence rates and new cases for the entire country for the year 2025. We developed a method for approximating population-based incidence from the pathology-based data series available nationally for the years 2008 to 2013, and augmented this with data from the Iranian National Population-based Cancer Registry (INPCR) for the years 2014 to 2016. We fitted time-linear age-period models to the recent incidence trends to quantify the future cancer incidence burden to the year 2025, delineating the contribution of changes due to risk and those due to demographic change. The number of new cancer cases is predicted to increase in Iran from 112 000 recorded cases in 2016 to an estimated 160 000 in 2025, a 42.6% increase, of which 13.9% and 28.7% were attributed to changes in risk and population structure, respectively. In terms of specific cancers, the greatest increases in cases are predicted for thyroid (113.8%), prostate (66.7%), female breast (63.0%) and colorectal cancer (54.1%). Breast, colorectal and stomach cancers were the most common cancers in Iran in 2016 and are predicted to remain the leading cancers nationally in 2025. The increasing trends in incidence of most common cancers in Iran reinforce the need for the tailored design and implementation of effective national cancer control programs across the country.


Assuntos
Modelos Estatísticos , Neoplasias/epidemiologia , Sistema de Registros/estatística & dados numéricos , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Tempo , Adulto Jovem
20.
Chemistry ; 27(46): 11837-11844, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34114265

RESUMO

C2 H2 /CO2 separation is a highly challenging process as a consequence of their similar physicochemical properties. In this work we have explored, by static and dynamic gas sorption techniques and computational modelling, the suitability of a series of two isoreticular robust Ni(II)pyrazolate-based MOFs, bearing alkyne moieties on the ligand backbones, for C2 H2 /CO2 separation. The results are consistent with high adsorption capacity and selectivity of the essayed systems towards C2 H2 molecules. Furthermore, a post-synthetic treatment with KOH ethanolic solution gives rise to linker vacancy defects and incorporation of extraframework potassium ions. Creation of defects is responsible for increased adsorption capacity for both gases, however, strong interactions of the cluster basic sites and extraframework potassium cations with CO2 molecules are responsible for a lowering of C2 H2 over CO2 selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA