Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Microsc ; 291(1): 57-72, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36455264

RESUMO

Polarised nonlinear microscopy has been extensively developed to study molecular organisation in biological tissues, quantifying the response of nonlinear signals to a varying incident linear polarisation. Polarisation Second harmonic Generation (PSHG) in particular is a powerful tool to decipher sub-microscopic modifications of fibrillar collagen organisation in type I and III collagen-rich tissues. The quality of SHG imaging is however limited to about one scattering mean free path in depth (typically 100 micrometres in biological tissues), due to the loss of focus quality, induced by wavefront aberrations and scattering at even larger depths. In this work, we study how optical depth penetration in biological tissues affects the quality of polarisation control, a crucial parameter for quantitative assessment of PSHG measurements. We apply wavefront shaping to correct for SHG signal quality in two regimes, adaptive optics for smooth aberration modes corrections at shallow depth, and wavefront shaping of higher spatial frequencies for optical focus correction at larger depths. Using nonlinear SHG active nanocrystals as guide stars, we quantify the capabilities of such optimisation methods to recover a high-quality linear polarisation and investigate how this approach can be applied to in-depth PSHG imaging in tissues, namely tendon and mouse cranial bone.


Assuntos
Colágeno , Microscopia , Animais , Camundongos , Microscopia/métodos , Colágeno/química
2.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958888

RESUMO

Hypophosphatasia (HPP) is a rare metabolic bone disorder characterized by low levels of tissue non-specific alkaline phosphatase (TNAP) that causes under-mineralization of the bone, leading to bone deformity and fractures. In addition, patients often present with chronic muscle pain, reduced muscle strength, and an altered gait. In this work, we explored dynamic muscle function in a homozygous TNAP knockout mouse model of severe juvenile onset HPP. We found a reduction in skeletal muscle size and impairment in a range of isolated muscle contractile properties. Using histological methods, we found that the structure of HPP muscles was similar to healthy muscles in fiber size, actin and myosin structures, as well as the α-tubulin and mitochondria networks. However, HPP mice had significantly fewer embryonic and type I fibers than wild type mice, and fewer metabolically active NADH+ muscle fibers. We then used oxygen respirometry to evaluate mitochondrial function and found that complex I and complex II leak respiration were reduced in HPP mice, but that there was no disruption in efficiency of electron transport in complex I or complex II. In summary, the severe HPP mouse model recapitulates the muscle strength impairment phenotypes observed in human patients. Further exploration of the role of alkaline phosphatase in skeletal muscle could provide insight into mechanisms of muscle weakness in HPP.


Assuntos
Doenças Ósseas Metabólicas , Hipofosfatasia , Humanos , Camundongos , Animais , Hipofosfatasia/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Modelos Animais de Doenças , Camundongos Knockout
3.
Cytotherapy ; 24(6): 608-618, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35190267

RESUMO

Cell therapies are expected to increase over the next decade owing to increasing demand for clinical applications. Mesenchymal stromal cells (MSCs) have been explored to treat a number of diseases, with some successes in early clinical trials. Despite early successes, poor MSC characterization results in lessened therapeutic capacity once in vivo. Here, we characterized MSCs derived from bone marrow (BM), adipose tissue and umbilical cord tissue for sphingolipids (SLs), a class of bioactive lipids, using liquid chromatography/tandem mass spectrometry. We found that ceramide levels differed based on the donor's sex in BM-MSCs. We detected fatty acyl chain variants in MSCs from all three sources. Linear discriminant analysis revealed that MSCs separated based on tissue source. Principal component analysis showed that interferon-γ-primed and unstimulated MSCs separated according to their SL signature. Lastly, we detected higher ceramide levels in low indoleamine 2,3-dioxygenase MSCs, indicating that sphingomyelinase or ceramidase enzymatic activity may be involved in their immune potency.


Assuntos
Células-Tronco Mesenquimais , Esfingolipídeos , Tecido Adiposo , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Ceramidas , Humanos , Lipidômica
4.
Connect Tissue Res ; 62(1): 4-14, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028134

RESUMO

Purpose: Imaging-based metrics for analysis of biological tissues are powerful tools that can extract information such as shape, size, periodicity, and many other features to assess the requested qualities of a tissue. Muscular and osseous tissues consist of periodic structures that are directly related to their function, and so analysis of these patterns likely reflects tissue health and regeneration.Methods: A method for assessment of periodic structures is by analyzing them in the spatial frequency domain using the Fourier transform. In this paper, we present two filters which we developed in the spatial frequency domain for the purpose of analyzing musculoskeletal structures. These filters provide information about 1) the angular orientation of the tissues and 2) their periodicity. We explore periodic structural patterns in the mitochondrial network of skeletal muscles that are reflective of muscle metabolism and myogenesis; and patterns of collagen fibers in the bone that are reflective of the organization and health of bone extracellular matrix.Results: We present an analysis of mouse skeletal muscle in healthy and injured muscles. We used a transgenic mouse that ubiquitously expresses fluorescent protein in their mitochondria and performed 2-photon microscopy to image the structures. To acquire the collagen structure of the bone we used non-linear SHG microscopy of mouse flat bone. We analyze and compare juvenile versus adult mice, which have different structural patterns.Conclusions: Our results indicate that these metrics can quantify musculoskeletal tissues during development and regeneration.


Assuntos
Benchmarking , Animais , Colágeno , Matriz Extracelular , Camundongos , Músculo Esquelético/diagnóstico por imagem
5.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669246

RESUMO

The accumulation of damaged mitochondria due to insufficient autophagy has been implicated in the pathophysiology of skeletal muscle aging. Ulk1 is an autophagy-related kinase that initiates autophagosome assembly and may also play a role in autophagosome degradation (i.e., autophagy flux), but the contribution of Ulk1 to healthy muscle aging is unclear. Therefore, the purpose of this study was to investigate the role of Ulk1-mediated autophagy in skeletal muscle aging. At age 22 months (80% survival rate), muscle contractile and metabolic function were assessed using electrophysiology in muscle-specific Ulk1 knockout mice (MKO) and their littermate controls (LM). Specific peak-isometric torque of the ankle dorsiflexors (normalized by tibialis anterior muscle cross-sectional area) and specific force of the fast-twitch extensor digitorum longus muscles was reduced in MKO mice compared to LM mice (p < 0.03). Permeabilized muscle fibers from MKO mice had greater mitochondrial content, yet lower mitochondrial oxygen consumption and greater reactive oxygen species production compared to fibers from LM mice (p ≤ 0.04). Alterations in neuromuscular junction innervation patterns as well as changes to autophagosome assembly and flux were explored as possible contributors to the pathological features in Ulk1 deficiency. Of primary interest, we found that Ulk1 phosphorylation (activation) to total Ulk1 protein content was reduced in older muscles compared to young muscles from both human and mouse, which may contribute to decreased autophagy flux and an accumulation of dysfunctional mitochondria. Results from this study support the role of Ulk1-mediated autophagy in aging skeletal muscle, reflecting Ulk1's dual role in maintaining mitochondrial integrity through autophagosome assembly and degradation.


Assuntos
Envelhecimento/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/deficiência , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Contração Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/metabolismo , Transdução de Sinais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autofagossomos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Junção Neuromuscular/metabolismo , Fosforilação/genética , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
6.
Am J Physiol Cell Physiol ; 318(2): C242-C252, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721614

RESUMO

The objective of this study was to interrogate the link between mitochondrial dysfunction and mitochondrial-specific autophagy in skeletal muscle. C57BL/6J mice were used to establish a time course of mitochondrial function and autophagy induction after fatigue (n = 12), eccentric contraction-induced injury (n = 20), or traumatic freeze injury (FI, n = 28); only FI resulted in a combination of mitochondrial dysfunction, i.e., decreased mitochondrial respiration, and autophagy induction. Moving forward, we tested the hypothesis that mitochondrial-specific autophagy is important for the timely recovery of mitochondrial function after FI. Following FI, there is a significant increase in several mitochondrial-specific autophagy-related protein contents including dynamin-related protein 1 (Drp1), BCL1 interacting protein (BNIP3), Pink1, and Parkin (~2-fold, P < 0.02). Also, mitochondrial-enriched fractions from FI muscles showed microtubule-associated protein light chain B1 (LC3)II colocalization suggesting autophagosome assembly around the damaged mitochondrial. Unc-51 like autophagy activating kinase (Ulk1) is considered necessary for mitochondrial-specific autophagy and herein we utilized a mouse model with Ulk1 deficiency in adult skeletal muscle (myogenin-Cre). While Ulk1 knockouts had contractile weakness compared with littermate controls (-27%, P < 0.02), the recovery of mitochondrial function was not different, and this may be due in part to a partial rescue of Ulk1 protein content within the regenerating muscle tissue of knockouts from differentiated satellite cells in which Ulk1 was not genetically altered via myogenin-Cre. Lastly, autophagy flux was significantly less in injured versus uninjured muscles (-26%, P < 0.02) despite the increase in autophagy-related protein content. This suggests autophagy flux is not upregulated to match increases in autophagy machinery after injury and represents a potential bottleneck in the clearance of damaged mitochondria by autophagy.


Assuntos
Autofagia/fisiologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Ferimentos e Lesões/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Diferenciação Celular/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo
7.
Nature ; 508(7495): 269-73, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24590072

RESUMO

Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1α (Hif-1α) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (<32 mm Hg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 (∼9.9 mm Hg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.


Assuntos
Medula Óssea/metabolismo , Oxigênio/análise , Animais , Artérias/metabolismo , Medula Óssea/irrigação sanguínea , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Bussulfano/farmacologia , Hipóxia Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hipóxia/diagnóstico , Hipóxia/metabolismo , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Nestina/metabolismo , Oxigênio/metabolismo , Fótons , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/efeitos da radiação
8.
Nature ; 511(7509): 353-7, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25030174

RESUMO

Corneal epithelial homeostasis and regeneration are sustained by limbal stem cells (LSCs), and LSC deficiency is a major cause of blindness worldwide. Transplantation is often the only therapeutic option available to patients with LSC deficiency. However, while transplant success depends foremost on LSC frequency within grafts, a gene allowing for prospective LSC enrichment has not been identified so far. Here we show that ATP-binding cassette, sub-family B, member 5 (ABCB5) marks LSCs and is required for LSC maintenance, corneal development and repair. Furthermore, we demonstrate that prospectively isolated human or murine ABCB5-positive LSCs possess the exclusive capacity to fully restore the cornea upon grafting to LSC-deficient mice in xenogeneic or syngeneic transplantation models. ABCB5 is preferentially expressed on label-retaining LSCs in mice and p63α-positive LSCs in humans. Consistent with these findings, ABCB5-positive LSC frequency is reduced in LSC-deficient patients. Abcb5 loss of function in Abcb5 knockout mice causes depletion of quiescent LSCs due to enhanced proliferation and apoptosis, and results in defective corneal differentiation and wound healing. Our results from gene knockout studies, LSC tracing and transplantation models, as well as phenotypic and functional analyses of human biopsy specimens, provide converging lines of evidence that ABCB5 identifies mammalian LSCs. Identification and prospective isolation of molecularly defined LSCs with essential functions in corneal development and repair has important implications for the treatment of corneal disease, particularly corneal blindness due to LSC deficiency.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Limbo da Córnea/citologia , Limbo da Córnea/fisiologia , Regeneração , Células-Tronco/metabolismo , Cicatrização , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/deficiência , Animais , Apoptose , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Transplante de Células-Tronco , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
9.
Biochem Biophys Res Commun ; 511(2): 280-286, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30782484

RESUMO

In the mammalian taste system, the taste receptor type 2 (T2R) family mediates bitter taste, and the taste receptor type 1 (T1R) family mediates sweet and umami tastes (the heterodimer of T1R2/T1R3 forms the sweet taste receptor, and the heterodimer of T1R1/T1R3 forms the umami taste receptor). In the chicken genome, bitter (T2R1, T2R2, and T2R7) and umami (T1R1 and T1R3) taste receptor genes have been found. However, the localization of these taste receptors in the taste buds of chickens has not been elucidated. In the present study, we demonstrated that the bitter taste receptor T2R7 and the umami taste receptor subunit T1R1 were expressed specifically in the taste buds of chickens labeled by Vimentin, a molecular marker for chicken taste buds. We analyzed the distributions of T2R7 and T1R1 on the oral epithelial sheets of chickens and among 3 different oral tissues of chickens: the palate, the base of the oral cavity, and the posterior tongue. We found that the distribution patterns and numbers were similar between taste bud clusters expressing these receptors and those expressing Vimentin. These results indicated broad distributions of T2R7 and T1R1 in the gustatory tissues of the chicken oral cavity. In addition, 3D-reconstructed images clearly revealed that high levels of T2R7 and T1R1 were expressed in Vimentin-negative taste bud cells. Taken together, the present results indicated the presence of bitter and umami sensing systems in the taste buds of chickens, and broad distribution of T2R7 and T1R1 in the chicken oral cavity.


Assuntos
Proteínas Aviárias/análise , Galinhas/anatomia & histologia , Receptores Acoplados a Proteínas G/análise , Papilas Gustativas/ultraestrutura , Vimentina/análise , Animais , Galinhas/fisiologia , Paladar , Papilas Gustativas/química , Papilas Gustativas/citologia , Percepção Gustatória
10.
Stem Cells ; 34(10): 2501-2511, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27335219

RESUMO

Human mesenchymal stem cells (MSCs) hold great promise in cellular therapeutics for skeletal diseases but lack expression of E-selectin ligands that direct homing of blood-borne cells to bone marrow. Previously, we described a method to engineer E-selectin ligands on the MSC surface by exofucosylating cells with fucosyltransferase VI (FTVI) and its donor sugar, GDP-Fucose, enforcing transient surface expression of the potent E-selectin ligand HCELL with resultant enhanced osteotropism of intravenously administered cells. Here, we sought to determine whether E-selectin ligands created via FTVI-exofucosylation are distinct in identity and function to those created by FTVI expressed intracellularly. To this end, we introduced synthetic modified mRNA encoding FTVI (FUT6-modRNA) into human MSCs. FTVI-exofucosylation (i.e., extracellular fucosylation) and FUT6-modRNA transfection (i.e., intracellular fucosylation) produced similar peak increases in cell surface E-selectin ligand levels, and shear-based functional assays showed comparable increases in tethering/rolling on human endothelial cells expressing E-selectin. However, biochemical analyses revealed that intracellular fucosylation induced expression of both intracellular and cell surface E-selectin ligands and also induced a more sustained expression of E-selectin ligands compared to extracellular fucosylation. Notably, live imaging studies to assess homing of human MSC to mouse calvarium revealed more osteotropism following intravenous administration of intracellularly-fucosylated cells compared to extracellularly-fucosylated cells. This study represents the first direct analysis of E-selectin ligand expression programmed on human MSCs by FTVI-mediated intracellular versus extracellular fucosylation. The observed differential biologic effects of FTVI activity in these two contexts may yield new strategies for improving the efficacy of human MSCs in clinical applications. Stem Cells 2016;34:2501-2511.


Assuntos
Osso e Ossos/citologia , Movimento Celular , Selectina E/metabolismo , Fucose/metabolismo , Células-Tronco Mesenquimais/citologia , Engenharia Metabólica/métodos , Animais , Medula Óssea/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Espaço Extracelular/metabolismo , Extravasamento de Materiais Terapêuticos e Diagnósticos/patologia , Fucosiltransferases/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Humanos , Espaço Intracelular/metabolismo , Cinética , Ligantes , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Crânio/metabolismo , Transfecção , Transplante Heterólogo
11.
Adv Funct Mater ; 26(22): 3899-3915, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28751853

RESUMO

Stem cell based therapies have critical impacts on treatments and cures of diseases such as neurodegenerative or cardiovascular disease. In vivo tracking of stem cells labeled with magnetic contrast agents is of particular interest and importance as it allows for monitoring of the cells' bio-distribution, viability, and physiological responses. Herein, recent advances are introduced in tracking and quantification of super-paramagnetic iron oxide (SPIO) nanoparticles-labeled cells with magnetic resonance imaging, a noninvasive approach that can longitudinally monitor transplanted cells. This is followed by recent translational research on human stem cells that are dual-labeled with green fluorescence protein (GFP) and SPIO nanoparticles, then transplanted and tracked in a chicken embryo model. Cell labeling efficiency, viability, and cell differentiation are also presented.

12.
Eur Heart J ; 36(23): 1478-88, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24950695

RESUMO

BACKGROUND: Myocarditis is characterized by inflammatory cell infiltration of the heart and subsequent deterioration of cardiac function. Monocytes are the most prominent population of accumulating leucocytes. We investigated whether in vivo administration of nanoparticle-encapsulated siRNA targeting chemokine (C-C motif) receptor 2 (CCR2)-a chemokine receptor crucial for leucocyte migration in humans and mice--reduces inflammation in autoimmune myocarditis. METHODS AND RESULTS: In myocardium of patients with myocarditis, CCL2 mRNA levels and CCR2(+) cells increased (P < 0.05), motivating us to pursue CCR2 silencing. Flow cytometric analysis showed that siRNA silencing of CCR2 (siCCR2) reduced the number of Ly6C(high) monocytes in hearts of mice with acute autoimmune myocarditis by 69% (P < 0.05), corroborated by histological assessment. The nanoparticle-delivered siRNA was not only active in monocytes but also in bone marrow haematopoietic progenitor cells. Treatment with siCCR2 reduced the migration of bone marrow granulocyte macrophage progenitors into the blood. Cellular magnetic resonance imaging (MRI) after injection of macrophage-avid magnetic nanoparticles detected myocarditis and therapeutic effects of RNAi non-invasively. Mice with acute myocarditis showed enhanced macrophage MRI contrast, which was prevented by siCCR2 (P < 0.05). Follow-up MRI volumetry revealed that siCCR2 treatment improved ejection fraction (P < 0.05 vs. control siRNA-treated mice). CONCLUSION: This study highlights the importance of CCR2 in the pathogenesis of myocarditis. In addition, we show that siCCR2 affects leucocyte progenitor trafficking. The data also point to a novel therapeutic strategy for the treatment of myocarditis.


Assuntos
Doenças Autoimunes/terapia , Quimiocina CCL2/genética , Miocardite/terapia , RNA Interferente Pequeno/farmacologia , Adulto , Animais , Movimento Celular , Quimiocina CCL2/metabolismo , Feminino , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Angiografia por Ressonância Magnética , Masculino , Camundongos , Monócitos/metabolismo , Nanopartículas , Interferência de RNA/fisiologia
13.
Blood ; 122(14): e23-32, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23980067

RESUMO

Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapy to treat several diseases and are compelling to consider as vehicles for delivery of biological agents. However, MSCs appear to act through a seemingly limited "hit-and-run" mode to quickly exert their therapeutic impact, mediated by several mechanisms, including a potent immunomodulatory secretome. Furthermore, MSC immunomodulatory properties are highly variable and the secretome composition following infusion is uncertain. To determine whether a transiently controlled antiinflammatory MSC secretome could be achieved at target sites of inflammation, we harnessed mRNA transfection to generate MSCs that simultaneously express functional rolling machinery (P-selectin glycoprotein ligand-1 [PSGL-1] and Sialyl-Lewis(x) [SLeX]) to rapidly target inflamed tissues and that express the potent immunosuppressive cytokine interleukin-10 (IL-10), which is not inherently produced by MSCs. Indeed, triple-transfected PSGL-1/SLeX/IL-10 MSCs transiently increased levels of IL-10 in the inflamed ear and showed a superior antiinflammatory effect in vivo, significantly reducing local inflammation following systemic administration. This was dependent on rapid localization of MSCs to the inflamed site. Overall, this study demonstrates that despite the rapid clearance of MSCs in vivo, engineered MSCs can be harnessed via a "hit-and-run" action for the targeted delivery of potent immunomodulatory factors to treat distant sites of inflammation.


Assuntos
Engenharia Genética/métodos , Imunossupressores/administração & dosagem , Interleucina-10/administração & dosagem , Células-Tronco Mesenquimais/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Inflamação/tratamento farmacológico , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro , Transfecção
14.
Blood ; 118(25): e184-91, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22034631

RESUMO

One of the greatest challenges in cell therapy is to minimally invasively deliver a large quantity of viable cells to a tissue of interest with high engraftment efficiency. Low and inefficient homing of systemically delivered mesenchymal stem cells (MSCs), for example, is thought to be a major limitation of existing MSC-based therapeutic approaches, caused predominantly by inadequate expression of cell surface adhesion receptors. Using a platform approach that preserves the MSC phenotype and does not require genetic manipulation, we modified the surface of MSCs with a nanometer-scale polymer construct containing sialyl Lewis(x) (sLe(x)) that is found on the surface of leukocytes and mediates cell rolling within inflamed tissue. The sLe(x) engineered MSCs exhibited a robust rolling response on inflamed endothelium in vivo and homed to inflamed tissue with higher efficiency compared with native MSCs. The modular approach described herein offers a simple method to potentially target any cell type to specific tissues via the circulation.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oligossacarídeos/química , Animais , Adesão Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Dinoprostona/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Células HL-60 , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Integrina beta1/metabolismo , Células-Tronco Mesenquimais/química , Camundongos , Camundongos Endogâmicos BALB C , Selectinas/metabolismo , Antígeno Sialil Lewis X , Antígenos Thy-1/metabolismo , Transplante Heterólogo
15.
Elife ; 122023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715686

RESUMO

Induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine. The iPSCs exhibit a preference for lineage differentiation to the donor cell type indicating the existence of memory of origin. Although the intrinsic effect of the donor cell type on differentiation of iPSCs is well recognized, whether disease-specific factors of donor cells influence the differentiation capacity of iPSC remains unknown. Using viral based reprogramming, we demonstrated the generation of iPSCs from chondrocytes isolated from healthy (AC-iPSCs) and osteoarthritis cartilage (OA-iPSCs). These reprogrammed cells acquired markers of pluripotency and differentiated into uncommitted mesenchymal-like progenitors. Interestingly, AC-iPSCs exhibited enhanced chondrogenic potential as compared OA-iPSCs and showed increased expression of chondrogenic genes. Pan-transcriptome analysis showed that chondrocytes derived from AC-iPSCs were enriched in molecular pathways related to energy metabolism and epigenetic regulation, together with distinct expression signature that distinguishes them from OA-iPSCs. Our molecular tracing data demonstrated that dysregulation of epigenetic and metabolic factors seen in OA chondrocytes relative to healthy chondrocytes persisted following iPSC reprogramming and differentiation toward mesenchymal progenitors. Our results suggest that the epigenetic and metabolic memory of disease may predispose OA-iPSCs for their reduced chondrogenic differentiation and thus regulation at epigenetic and metabolic level may be an effective strategy for controlling the chondrogenic potential of iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteoartrite , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma , Epigênese Genética , Cartilagem , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Osteoartrite/genética , Osteoartrite/metabolismo
16.
Front Neuroimaging ; 2: 959601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554651

RESUMO

Introduction: Mitochondria are extremely important organelles in the regulation of bone marrow and brain activity. However, live imaging of these subcellular features with high resolution in scattering tissues like brain or bone has proven challenging. Methods: In this study, we developed a two-photon fluorescence microscope with adaptive optics (TPFM-AO) for high-resolution imaging, which uses a home-built Shack-Hartmann wavefront sensor (SHWFS) to correct system aberrations and a sensorless approach for correcting low order tissue aberrations. Results: Using AO increases the fluorescence intensity of the point spread function (PSF) and achieves fast imaging of subcellular organelles with 400 nm resolution through 85 µm of highly scattering tissue. We achieved ~1.55×, ~3.58×, and ~1.77× intensity increases using AO, and a reduction of the PSF width by ~0.83×, ~0.74×, and ~0.9× at the depths of 0, 50 µm and 85 µm in living mouse bone marrow respectively, allowing us to characterize mitochondrial health and the survival of functioning cells with a field of view of 67.5× 67.5 µm. We also investigate the role of initial signal and background levels in sample correction quality by varying the laser power and camera exposure time and develop an intensity-based criteria for sample correction. Discussion: This study demonstrates a promising tool for imaging of mitochondria and other organelles in optically distorting biological environments, which could facilitate the study of a variety of diseases connected to mitochondrial morphology and activity in a range of biological tissues.

17.
Commun Biol ; 6(1): 749, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468760

RESUMO

Volumetric muscle loss (VML) results in permanent functional deficits and remains a substantial regenerative medicine challenge. A coordinated immune response is crucial for timely myofiber regeneration, however the immune response following VML has yet to be fully characterized. Here, we leveraged dimensionality reduction and pseudo-time analysis techniques to elucidate the cellular players underlying a functional or pathological outcome as a result of subcritical injury or critical VML in the murine quadriceps, respectively. We found that critical VML resulted in a sustained presence of M2-like and CD206hiLy6Chi 'hybrid' macrophages whereas subcritical defects resolved these populations. Notably, the retained M2-like macrophages from critical VML injuries presented with aberrant cytokine production which may contribute to fibrogenesis, as indicated by their co-localization with fibroadipogenic progenitors (FAPs) in areas of collagen deposition within the defect. Furthermore, several T cell subpopulations were significantly elevated in critical VML compared to subcritical injuries. These results demonstrate a dysregulated immune response in critical VML that is unable to fully resolve the chronic inflammatory state and transition to a pro-regenerative microenvironment within the first week after injury. These data provide important insights into potential therapeutic strategies which could reduce the immune cell burden and pro-fibrotic signaling characteristic of VML.


Assuntos
Músculo Esquelético , Doenças Musculares , Camundongos , Animais , Músculo Esquelético/patologia , Regeneração , Doenças Musculares/patologia , Doenças Musculares/terapia , Medicina Regenerativa , Colágeno
18.
Commun Biol ; 6(1): 1258, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086992

RESUMO

The mechanisms leading to changes in mesoscale chromatin organization during cellular aging are unknown. Here, we used transcriptional activator-like effectors, RNA-seq and superresolution analysis to determine the effects of genotoxic stress on oocyte chromatin structure. Major satellites are organized into tightly packed globular structures that coalesce into chromocenters and dynamically associate with the nucleolus. Acute irradiation significantly enhanced chromocenter mobility in transcriptionally inactive oocytes. In transcriptionally active oocytes, irradiation induced a striking unfolding of satellite chromatin fibers and enhanced the expression of transcripts required for protection from oxidative stress (Fermt1, Smg1), recovery from DNA damage (Tlk2, Rad54l) and regulation of heterochromatin assembly (Zfp296, Ski-oncogene). Non-irradiated, senescent oocytes exhibit not only high chromocenter mobility and satellite distension but also a high frequency of extra chromosomal satellite DNA. Notably, analysis of biological aging using an oocyte-specific RNA clock revealed cellular communication, posttranslational protein modifications, chromatin and histone dynamics as the top cellular processes that are dysregulated in both senescent and irradiated oocytes. Our results indicate that unfolding of heterochromatin fibers following acute genotoxic stress or cellular aging induced the formation of distended satellites and that abnormal chromatin structure together with increased chromocenter mobility leads to chromosome instability in senescent oocytes.


Assuntos
Heterocromatina , Oócitos , Animais , Heterocromatina/genética , Heterocromatina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Montagem e Desmontagem da Cromatina , Mamíferos/genética
19.
J Tissue Eng ; 13: 20417314221130486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339372

RESUMO

Tendon is predominantly composed of aligned type I collagen, but additional isoforms are known to influence fibril architecture and maturation, which contribute to the tendon's overall biomechanical performance. The role of the less well-studied collagen isoforms on fibrillogenesis in tissue engineered tendons is currently unknown, and correlating their relative abundance with biomechanical changes in response to cyclic strain is a promising method for characterising optimised bioengineered tendon grafts. In this study, human mesenchymal stem cells (MSCs) were cultured in a fibrin scaffold with 3%, 5% or 10% cyclic strain at 0.5 Hz for 3 weeks, and a comprehensive multimodal analysis comprising qPCR, western blotting, histology, mechanical testing, fluorescent probe CLSM, TEM and label-free second-harmonic imaging was performed. Molecular data indicated complex transcriptional and translational regulation of collagen isoforms I, II, III, V XI, XII and XIV in response to cyclic strain. Isoforms (XII and XIV) associated with embryonic tenogenesis were deposited in the formation of neo-tendons from hMSCs, suggesting that these engineered tendons form through some recapitulation of a developmental pathway. Tendons cultured with 3% strain had the smallest median fibril diameter but highest resistance to stress, whilst at 10% strain tendons had the highest median fibril diameter and the highest rate of stress relaxation. Second harmonic generation exposed distinct structural arrangements of collagen fibres in each strain group. Fluorescent probe images correlated increasing cyclic strain with increased fibril alignment from 40% (static strain) to 61.5% alignment (10% cyclic strain). These results indicate that cyclic strain rates stimulate differential cell responses via complex regulation of collagen isoforms which influence the structural organisation of developing fibril architectures.

20.
J Biophotonics ; 14(1): e202000160, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32844561

RESUMO

Wavefront-shaping (WS) enables imaging through scattering tissues like bone, which is important for neuroscience and bone-regeneration research. WS corrects for the optical aberrations at a given depth and field-of-view (FOV) within the sample; the extent of the validity of which is limited to a region known as the isoplanatic patch (IP). Knowing this parameter helps to estimate the number of corrections needed for WS imaging over a given FOV. In this paper, we first present direct transmissive measurement of murine skull IP using digital optical phase conjugation based focusing. Second, we extend our previously reported phase accumulation ray tracing (PART) method to provide in-situ in-silico estimation of IP, called correlative PART (cPART). Our results show an IP range of 1 to 3 µm for mice within an age range of 8 to 14 days old and 1.00 ± 0.25 µm in a 12-week old adult skull. Consistency between the two measurement approaches indicates that cPART can be used to approximate the IP before a WS experiment, which can be used to calculate the number of corrections required within a given field of view.


Assuntos
Diagnóstico por Imagem , Crânio , Animais , Camundongos , Crânio/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA