RESUMO
Controlling gene expression during a bioprocess enables real-time metabolic control, coordinated cellular responses, and staging order-of-operations. Achieving this with small molecule inducers is impractical at scale and dynamic circuits are difficult to design. Here, we show that the same set of sensors can be integrated by different combinatorial logic circuits to vary when genes are turned on and off during growth. Three Escherichia coli sensors that respond to the consumption of feedstock (glucose), dissolved oxygen, and by-product accumulation (acetate) are constructed and optimized. By integrating these sensors, logic circuits implement temporal control over an 18-h period. The circuit outputs are used to regulate endogenous enzymes at the transcriptional and post-translational level using CRISPRi and targeted proteolysis, respectively. As a demonstration, two circuits are designed to control acetate production by matching their dynamics to when endogenous genes are expressed (pta or poxB) and respond by turning off the corresponding gene. This work demonstrates how simple circuits can be implemented to enable customizable dynamic gene regulation.
Assuntos
Escherichia coli/metabolismo , Redes e Vias Metabólicas , Biologia de Sistemas/métodos , Acetatos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Oxigênio/metabolismoRESUMO
Optogenetic tools use colored light to rapidly control gene expression in space and time. We designed a genetically encoded system that gives Escherichia coli the ability to distinguish between red, green, and blue (RGB) light and respond by changing gene expression. We use this system to produce 'color photographs' on bacterial culture plates by controlling pigment production and to redirect metabolic flux by expressing CRISPRi guide RNAs.
Assuntos
Escherichia coli/genética , Escherichia coli/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Engenharia Genética , Luz , Sistemas CRISPR-Cas/genética , Cor , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Análise do Fluxo Metabólico , Pigmentação/efeitos da radiação , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismoRESUMO
Synthetic genetic sensors and circuits enable programmable control over the timing and conditions of gene expression. They are being increasingly incorporated into the control of complex, multigene pathways and cellular functions. Here, we propose a design strategy to genetically separate the sensing/circuitry functions from the pathway to be controlled. This separation is achieved by having the output of the circuit drive the expression of a polymerase, which then activates the pathway from polymerase-specific promoters. The sensors, circuits and polymerase are encoded together on a 'controller' plasmid. Variants of T7 RNA polymerase that reduce toxicity were constructed and used as scaffolds for the construction of four orthogonal polymerases identified via part mining that bind to unique promoter sequences. This set is highly orthogonal and induces cognate promoters by 8- to 75-fold more than off-target promoters. These orthogonal polymerases enable four independent channels linking the outputs of circuits to the control of different cellular functions. As a demonstration, we constructed a controller plasmid that integrates two inducible systems, implements an AND logic operation and toggles between metabolic pathways that change Escherichia coli green (deoxychromoviridans) and red (lycopene). The advantages of this organization are that (i) the regulation of the pathway can be changed simply by introducing a different controller plasmid, (ii) transcription is orthogonal to host machinery and (iii) the pathway genes are not transcribed in the absence of a controller and are thus more easily carried without invoking evolutionary pressure.
Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Redes Reguladoras de Genes , Proteínas Virais/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Engenharia Genética , Regiões Promotoras Genéticas , Proteínas Virais/genéticaRESUMO
The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone hasâand willâyield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.
Assuntos
Biotecnologia , Biologia SintéticaRESUMO
Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense-and-respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life-like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Assuntos
Células Artificiais , Nanopartículas , Nanoestruturas , Sistemas de Liberação de Medicamentos , NanomedicinaRESUMO
Organism engineering requires the selection of an appropriate chassis, editing its genome, combining traits from different source species, and controlling genes with synthetic circuits. When a strain is needed for a new target objective, for example, to produce a chemical-of-need, the best strains, genes, techniques, software, and expertise may be distributed across laboratories. Here, we report a project where we were assigned phloroglucinol (PG) as a target, and then combined unique capabilities across the United States Army, Navy, and Air Force service laboratories with the shared goal of designing an organism to produce this molecule. In addition to the laboratory strain Escherichia coli, organisms were screened from soil and seawater. Putative PG-producing enzymes were mined from a strain bank of bacteria isolated from aircraft and fuel depots. The best enzyme was introduced into the ocean strain Marinobacter atlanticus CP1 with its genome edited to redirect carbon flux from natural fatty acid ester (FAE) production. PG production was also attempted in Bacillus subtilis and Clostridium acetobutylicum. A genetic circuit was constructed in E. coli that responds to PG accumulation, which was then ported to an in vitro paper-based system that could serve as a platform for future low-cost strain screening or for in-field sensing. Collectively, these efforts show how distributed biotechnology laboratories with domain-specific expertise can be marshalled to quickly provide a solution for a targeted organism engineering project, and highlights data and material sharing protocols needed to accelerate future efforts.
Assuntos
Engenharia Metabólica , Nitrobenzenos/metabolismo , Floroglucinol/metabolismo , Escherichia coli/metabolismo , Testes Genéticos , Floroglucinol/químicaRESUMO
E7, a single domain Family 33 cellulose binding module (CBM) protein, and E8, a non-catalytic, three-domain protein consisting of a Family 33 CBM, a FNIII domain, followed by a Family 2 CBM, were cloned, expressed, purified, and characterized. Western blots showed that E7 and E8 were induced and secreted when Thermobifida fusca was grown on cellobiose, Solka floc, switchgrass, or alfalfa as well as on beta-1,3 linked glucose molecules such as laminaribiose or pachyman. E8 bound well to alpha- and beta-chitin and bacterial microcrystalline cellulose (BMCC) at all pHs tested. E7 bound strongly to beta-chitin, less well to alpha-chitin and more weakly to BMCC than E8. Filter paper binding assays showed that E7 was 28% bound, E8 was 39% bound, a purified CBM2 binding domain from Cel6B was 88% bound, and only 5% of the Cel5A catalytic domain was bound. A C-terminal 6xHis tag influenced binding of both E7 and E8 to these substrates. Filter paper activity assays showed enhanced activity of T. fusca cellulases when E7 or E8 was present. This effect was observed at very low concentrations of cellulases or at very long times into the reaction and was mainly independent of the type of cellulase and the number of cellulases in the mixture. E8, and to a lesser extent E7, significantly enhanced the activity of Serratia marscescens Chitinase C on beta-chitin.
Assuntos
Actinomycetales/enzimologia , Celulases/metabolismo , Receptores de Superfície Celular/metabolismo , Actinomycetales/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Celobiose/metabolismo , Celulases/química , Celulases/genética , Celulases/isolamento & purificação , Celulose/química , Quitina/química , Quitina/metabolismo , Quitinases/metabolismo , Clonagem Molecular , Meios de Cultura , Dissacarídeos/metabolismo , Genes Bacterianos , Glucanos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Medicago sativa/metabolismo , Dados de Sequência Molecular , Panicum/metabolismo , Ligação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/isolamento & purificação , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por SubstratoRESUMO
The use of nLC-ESI-MS/MS in shotgun proteomics experiments and GeLC-MS/MS analysis is well accepted and routinely available in most proteomics laboratories. However, the same cannot be said for nLC-MALDI MS/MS, which has yet to experience such widespread acceptance, despite the fact that the MALDI technology offers several critical advantages over ESI. As an illustration, in an analysis of moderately complex sample of E. coli proteins, the use MALDI in addition to ESI in GeLC-MS/MS resulted in a 16% average increase in protein identifications, while with more complex samples the number of additional protein identifications increased by an average of 45%. The size of the unique peptides identified by MALDI was, on average, 25% larger than the unique peptides identified by ESI, and they were found to be slightly more hydrophilic. The insensitivity of MALDI to the presence of ionization suppression agents was shown to be a significant advantage, suggesting it be used as a complement to ESI when ion suppression is a possibility. Furthermore, the higher resolution of the TOF/TOF instrument improved the sensitivity, accuracy, and precision of the data over that obtained using only ESI-based iTRAQ experiments using a linear ion trap. Nevertheless, accurate data can be generated with either instrument. These results demonstrate that coupling nanoLC with both ESI and MALDI ionization interfaces improves proteome coverage, reduces the deleterious effects of ionization suppression agents, and improves quantitation, particularly in complex samples.
Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Proteômica , Sequência de Aminoácidos , Dados de Sequência Molecular , NanotecnologiaRESUMO
Methylating chemicals are common in industry and agriculture and are often toxic, partly due to their propensity to methylate DNA. The Escherichia coli Ada protein detects methylating compounds by sensing aberrant methyl adducts on the phosphoester backbone of DNA. We characterize this system as a genetic sensor and engineer it to lower the detection threshold. By overexpressing Ada from a plasmid, we improve the sensor's dynamic range to 350-fold induction and lower its detection threshold to 40 µM for methyl iodide. In eukaryotes, there is no known sensor of methyl adducts on the phosphoester backbone of DNA. By fusing the N-terminal domain of Ada to the Gal4 transcriptional activation domain, we built a functional sensor for methyl phosphotriester adducts in Saccharomyces cerevisiae. This sensor can be tuned to variable specifications by altering the expression level of the chimeric sensor and changing the number of Ada operators upstream of the Gal4-sensitive reporter promoter. These changes result in a detection threshold of 28 µM and 5.2-fold induction in response to methyl iodide. When the yeast sensor is exposed to different SN1 and SN2 alkylating compounds, its response profile is similar to that observed for the native Ada protein in E. coli, indicating that its native function is retained in yeast. Finally, we demonstrate that the specifications achieved for the yeast sensor are suitable for detecting methylating compounds at relevant concentrations in environmental samples. This work demonstrates the movement of a sensor from a prokaryotic to eukaryotic system and its rational tuning to achieve desired specifications.
Assuntos
Técnicas Biossensoriais , Metilação de DNA , Escherichia coli/genética , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genéticaRESUMO
M13 bacteriophage is a well-characterized platform for peptide display. The utility of the M13 display platform is derived from the ability to encode phage protein fusions with display peptides at the genomic level. However, the genome of the phage is complicated by overlaps of key genetic elements. These overlaps directly couple the coding sequence of one gene to the coding or regulatory sequence of another, making it difficult to alter one gene without disrupting the other. Specifically, overlap of the end of gene VII and the beginning of gene IX has prevented the functional genomic modification of the N-terminus of p9. By redesigning the M13 genome to physically separate these overlapping genetic elements, a process known as "refactoring," we enabled independent manipulation of gene VII and gene IX and the construction of the first N-terminal genomic modification of p9 for peptide display. We demonstrate the utility of this refactored genome by developing an M13 bacteriophage-based platform for targeted imaging of and drug delivery to prostate cancer cells in vitro. This successful use of refactoring principles to re-engineer a natural biological system strengthens the suggestion that natural genomes can be rationally designed for a number of applications.
Assuntos
Bacteriófago M13/genética , Bacteriófago M13/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Imagem Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Biblioteca de Peptídeos , Peptídeos/genética , Peptídeos/metabolismoRESUMO
Synthetic genetic programs promise to enable novel applications in industrial processes. For such applications, the genetic circuits that compose programs will require fidelity in varying and complex environments. In this work, we report the performance of two synthetic circuits in Escherichia coli under industrially relevant conditions, including the selection of media, strain, and growth rate. We test and compare two transcriptional circuits: an AND and a NOR gate. In E. coli DH10B, the AND gate is inactive in minimal media; activity can be rescued by supplementing the media and transferring the gate into the industrial strain E. coli DS68637 where normal function is observed in minimal media. In contrast, the NOR gate is robust to media composition and functions similarly in both strains. The AND gate is evaluated at three stages of early scale-up: 100 mL shake flask experiments, a 1 mL MTP microreactor, and a 10 L bioreactor. A reference plasmid that constitutively produces a GFP reporter is used to make comparisons of circuit performance across conditions. The AND gate function is quantitatively different at each scale. The output deteriorates late in fermentation after the shift from exponential to constant feed rates, which induces rapid resource depletion and changes in growth rate. In addition, one of the output states of the AND gate failed in the bioreactor, effectively making it only responsive to a single input. Finally, cells carrying the AND gate show considerably less accumulation of biomass. Overall, these results highlight challenges and suggest modified strategies for developing and characterizing genetic circuits that function reliably during fermentation.