Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(6): 1024-1030, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981698

RESUMO

Tyrosine hydroxylase (TH) catalyzes hydroxylation of L-tyrosine to L-3,4-dihydroxyphenylalanine, the initial and rate-limiting step in the synthesis of dopamine, noradrenaline, and adrenaline. Mutations in the human TH gene are associated with hereditary motor disorders. The common C886T mutation identified in the mouse Th gene results in the R278H substitution in the enzyme molecule. We investigated the impact of this mutation on the TH activity in the mouse midbrain. The TH activity in the midbrain of Mus musculus castaneus (CAST) mice homozygous for the 886C allele was higher compared to C57BL/6 and DBA/2 mice homozygous for the 886T allele. Notably, this difference in the enzyme activity was not associated with changes in the Th gene mRNA levels and TH protein content. Analysis of the TH activity in the midbrain in mice from the F2 population obtained by crossbreeding of C57BL/6 and CAST mice revealed that the 886C allele is associated with a high TH activity. Moreover, this allele showed complete dominance over the 886T allele. However, the C886T mutation did not affect the levels of TH protein in the midbrain. These findings demonstrate that the C886T mutation is a major genetic factor determining the activity of TH in the midbrain of common laboratory mouse strains. Moreover, it represents the first common spontaneous mutation in the mouse Th gene whose influence on the enzyme activity has been demonstrated. These results will help to understand the role of TH in the development of adaptive and pathological behavior, elucidate molecular mechanisms regulating the activity of TH, and explore pharmacological agents for modulating its function.


Assuntos
Camundongos Endogâmicos C57BL , Tirosina 3-Mono-Oxigenase , Animais , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Camundongos , Mutação , Encéfalo/metabolismo , Camundongos Endogâmicos DBA , Mesencéfalo/metabolismo , Mesencéfalo/enzimologia , Masculino , Alelos
2.
Biochemistry (Mosc) ; 89(6): 1109-1121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981704

RESUMO

At the Institute of Cytology and Genetics (Novosibirsk, Russia) for over 85 generations, gray rats have been selected for high aggression toward humans (aggressive rats) or its complete absence (tame rats). Aggressive rats are an interesting model for studying fear-induced aggression. Benzopentathiepin TC-2153 exerts an antiaggressive effect on aggressive rats and affects the serotonergic system: an important regulator of aggression. The aim of this study was to investigate effects of TC-2153 on key serotonergic-system enzymes - tryptophan hydroxylase 2 (TPH2) and monoamine oxidase A (MAOA) - in the brain of aggressive and tame rats. Either TC-2153 (10 or 20 mg/kg) or vehicle was administered once intraperitoneally to aggressive and tame male rats. TPH2 and MAOA enzymatic activities and mRNA and protein levels were assessed. The selection for high aggression resulted in upregulation of Tph2 mRNA in the midbrain, of the TPH2 protein in the hippocampus, and of proteins TPH2 and MAOA in the hypothalamus, as compared to tame rats. MAO enzymatic activity was higher in the midbrain and hippocampus of aggressive rats while TPH2 activity did not differ between the strains. The single TC-2153 administration decreased TPH2 and MAO activity in the hypothalamus and midbrain, respectively. The drug affected MAOA protein levels in the hypothalamus: upregulated them in aggressive rats and downregulated them in tame ones. Thus, this study shows profound differences in the expression and activity of key serotonergic system enzymes in the brain of rats selectively bred for either highly aggressive behavior toward humans or its absence, and the effects of benzopentathiepin TC-2153 on these enzymes may point to mechanisms of its antiaggressive action.


Assuntos
Agressão , Encéfalo , Monoaminoxidase , Triptofano Hidroxilase , Animais , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/genética , Monoaminoxidase/metabolismo , Monoaminoxidase/genética , Ratos , Masculino , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Agressão/efeitos dos fármacos , Humanos , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA