Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 27(2): 565-569, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496223

RESUMO

We describe Shuni virus (SHUV) detection in human neurologic disease cases in South Africa. SHUV RNA was identified in 5% of cerebrospinal fluid specimens collected during the arbovirus season from public sector hospitals. This finding suggests that SHUV may be a previously unrecognized cause of human neurologic infections in Africa.


Assuntos
Infecções por Bunyaviridae , Orthobunyavirus , Infecções por Bunyaviridae/epidemiologia , Humanos , Orthobunyavirus/genética , RNA Viral/genética , África do Sul/epidemiologia
2.
PLOS Glob Public Health ; 4(4): e0002703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603677

RESUMO

We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection. A total of 286 adults (with or without HIV) were enrolled >4 months after an Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 vector was also evaluated. No vaccine-associated serious adverse events were recorded. The full- and half-dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies (2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-cell responses had waned to baseline levels. While we detected strong anti-vector immunity, there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting. Overall, in the context of hybrid immunity, boosting with heterologous full- or half-dose BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-boost. Trial Registration: The study has been registered to the South African National Clinical Trial Registry (SANCTR): DOH-27-012022-7841. The approval letter from SANCTR has been provided in the up-loaded documents.

3.
medRxiv ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38045321

RESUMO

Background: We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection. Methods: A total of 286 adults (with or without HIV) were enrolled >4 months after an Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 vector was also evaluated. Results: No vaccine-associated serious adverse events were recorded. The full- and half-dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies (2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-cell responses had waned to baseline levels. While we detected strong anti-vector immunity, there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting. Conclusion: In the context of hybrid immunity, boosting with heterologous full- or half-dose BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-boost. Trial Registration: South African National Clinical Trial Registry (SANCR): DOH-27-012022-7841. Funding: South African Medical Research Council (SAMRC) and South African Department of Health (SA DoH).

4.
Viruses ; 13(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069356

RESUMO

The Orthobunyavirus genus, family Peribunyaviridae, contains several important emerging and re-emerging arboviruses of veterinary and medical importance. These viruses may cause mild febrile illness, to severe encephalitis, fetal deformity, abortion, hemorrhagic fever and death in humans and/or animals. Shuni virus (SHUV) is a zoonotic arbovirus thought to be transmitted by hematophagous arthropods. It was previously reported in a child in Nigeria in 1966 and horses in Southern Africa in the 1970s and again in 2009, and in humans with neurological signs in 2017. Here we investigated the epidemiology and phylogenetic relationship of SHUV strains detected in horses presenting with febrile and neurological signs in South Africa. In total, 24/1820 (1.3%) horses submitted to the zoonotic arbovirus surveillance program tested positive by real-time reverse transcription (RTPCR) between 2009 and 2019. Cases were detected in all provinces with most occurring in Gauteng (9/24, 37.5%). Neurological signs occurred in 21/24 (87.5%) with a fatality rate of 45.8%. Partial sequencing of the nucleocapsid gene clustered the identified strains with SHUV strains previously identified in South Africa (SA). Full genome sequencing of a neurological case detected in 2016 showed 97.8% similarity to the SHUV SA strain (SAE18/09) and 97.5% with the Nigerian strain and 97.1% to the 2014 Israeli strain. Our findings suggest that SHUV is circulating annually in SA and despite it being relatively rare, it causes severe neurological disease and death in horses.


Assuntos
Infecções por Bunyaviridae/veterinária , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/virologia , Orthobunyavirus , África Austral/epidemiologia , Animais , Feminino , Genoma Viral , Genômica/métodos , Geografia Médica , Doenças dos Cavalos/diagnóstico , Cavalos , Masculino , Orthobunyavirus/classificação , Orthobunyavirus/genética , Filogenia , Estações do Ano , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA