Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 606(7912): 94-101, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650358

RESUMO

Neurotransmitters play essential roles in regulating neural circuit dynamics both in the central nervous system as well as at the peripheral, including the gastrointestinal tract1-3. Their real-time monitoring will offer critical information for understanding neural function and diagnosing disease1-3. However, bioelectronic tools to monitor the dynamics of neurotransmitters in vivo, especially in the enteric nervous systems, are underdeveloped. This is mainly owing to the limited availability of biosensing tools that are capable of examining soft, complex and actively moving organs. Here we introduce a tissue-mimicking, stretchable, neurochemical biological interface termed NeuroString, which is prepared by laser patterning of a metal-complexed polyimide into an interconnected graphene/nanoparticle network embedded in an elastomer. NeuroString sensors allow chronic in vivo real-time, multichannel and multiplexed monoamine sensing in the brain of behaving mouse, as well as measuring serotonin dynamics in the gut without undesired stimulations and perturbing peristaltic movements. The described elastic and conformable biosensing interface has broad potential for studying the impact of neurotransmitters on gut microbes, brain-gut communication and may ultimately be extended to biomolecular sensing in other soft organs across the body.


Assuntos
Encéfalo , Sistema Nervoso Entérico , Trato Gastrointestinal , Neurotransmissores , Animais , Técnicas Biossensoriais , Encéfalo/metabolismo , Eixo Encéfalo-Intestino , Elastômeros , Sistema Nervoso Entérico/metabolismo , Trato Gastrointestinal/inervação , Trato Gastrointestinal/fisiologia , Grafite , Lasers , Camundongos , Nanopartículas , Neurotransmissores/análise , Serotonina/análise
2.
Nat Biotechnol ; 38(9): 1097, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32341566

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Biotechnol ; 38(9): 1031-1036, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32313193

RESUMO

Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases1-3. However, their fixed dimensions cannot accommodate rapid tissue growth4,5 and may impair development6. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications6-8. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.


Assuntos
Eletrônica Médica/instrumentação , Eletrônica Médica/métodos , Neuroestimuladores Implantáveis , Animais , Materiais Biocompatíveis/química , Polímeros/química , Ratos , Nervo Isquiático/fisiologia , Substâncias Viscoelásticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA