RESUMO
Activated naive (aNAV) B cells have been shown to be the precursor of the CD11c+T-bet+ IgD-CD27- double-negative (DN)2 or atypical memory (aMEM) B cells in systemic lupus erythematosus (SLE). To determine factors that maintain resting naive (rNAV) B cells, the transcriptomic program in naive (IGHD+IGHM +) B cells in human healthy control subjects (HC) and subjects with SLE was analyzed by single-cell RNA-sequencing analysis. In HC, naive B cells expressed IL-4 pathway genes, whereas in SLE, naive B cells expressed type I IFN-stimulated genes (ISGs). In HC, aNAV B cells exhibited upregulation of the gene signature of germinal center and classical memory (cMEM) B cells. In contrast, in SLE, aNAV B cells expressed signature genes of aMEM. In vitro exposure of SLE B cells to IL-4 promoted B cell development into CD27+CD38+ plasmablasts/plasma and IgD-CD27+ cMEM B cells. The same treatment blocked the development of CD11c+Tbet+ aNAV and DN2 B cells and preserved DN B cells as CD11c-Tbet- DN1 B cells. Lower expression of IL-4R and increased intracellular IFN-ß in naive B cells was correlated with the accumulation of CD21-IgD- B cells and the development of anti-Smith and anti-DNA autoantibodies in patients with SLE (n = 47). Our results show that IL-4R and type I IFN signaling in naive B cells induce the development of distinct lineages of cMEM versus aMEM B cells, respectively. Furthermore, diminished IL-4R signaling shifted activated B cell development from the DN1 to the DN2 trajectory in patients with SLE. Therapies that enhance IL-4R signaling may be beneficial for ISGhi SLE patients.
Assuntos
Subpopulações de Linfócitos B , Lúpus Eritematoso Sistêmico , Autoanticorpos/metabolismo , Humanos , Imunoglobulina D/metabolismo , Interleucina-4/metabolismo , RNA/metabolismoRESUMO
T-helper cytokines interferon gamma (IFNÉ£), interleukin 17 (IL-17) and IL-10 impact systemic lupus erythematosus (SLE) directly and indirectly via modulation of autoAb production. We determined the separate and combined effects on clinical manifestations of SLE (N = 62). IFNÉ£, IL-17 but not IL-10 were significantly elevated in patients with SLE. IFNÉ£ positively correlated with anti-DNA and anti-SSA. IL-17 positively correlated with anti-SSA and was significantly higher in patients with discoid rash and class V LN. IL-10 did not correlate with circulating autoantibodies but was significantly elevated in patients with LN. Patients with LN had elevated plasma levels of anti-DNA and anti-Sm/ribonuclear protein (RNP). Anti-Sm/RNP levels were decreased in patients with acute mucocutaneous manifestations, including photosensitivity and/or malar rash. The study provides critical insights into pathological mechanisms of LN, which could help guide future diagnoses and therapies.
Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Citocinas , Interleucina-17 , Estudos Transversais , Autoanticorpos , Linfócitos T , Interferon gama , Anticorpos AntinuclearesRESUMO
Cardinal features of lupus include elevated B cell activation and autoantibody production with a female sex preponderance. We quantified interactions of sex and genetic variation on the development of autoimmune B-cell phenotypes and autoantibodies in the BXD2 murine model of lupus using a cohort of backcrossed progeny (BXD2 x C57BL/6J) x BXD2. Sex was the key factor leading to increased total IgG, IgG2b, and autoantibodies. The percentage of T-bet+CD11c+ IgD+ activated naive B cells (aNAV) was higher in females and was associated with increased T-bet+CD11c+ IgD- age-related B cells, Fas+GL7+ germinal center B cells, Cxcr5-Icos+ peripheral T-helper cells, and Cxcr5+Icos+ follicular T-helper cells. IFN-ß was elevated in females. Variation in aNAV cells was mapped to Chr 7 in a locus that shows significant interactions between the female sex and heterozygous B/D variant. Our results suggest that activation of naive B cells forms the basis for the female-predominant development of autoantibodies in lupus-susceptible BXD2 mice.
Assuntos
Linfócitos B , Lúpus Eritematoso Sistêmico , Animais , Feminino , Humanos , Masculino , Camundongos , Autoanticorpos , Cruzamentos Genéticos , Centro Germinativo , Lúpus Eritematoso Sistêmico/genética , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores , Caracteres SexuaisRESUMO
The current concepts for development of autoreactive B cells in SLE (systemic lupus erythematosus) focus on extrinsic stimuli and factors that provoke B cells into tolerance loss. Traditionally, major tolerance loss pathways are thought to be regulated by factors outside the B cell including autoantigen engagement of the B-cell receptor (BCR) with simultaneous type I interferon (IFN) produced by dendritic cells, especially plasmacytoid dendritic cells (pDCs). Later, in autoreactive follicles, B-cells encounter T-follicular helper cells (Tfh) that produce interleukin (IL)-21, IL-4 and pathogenic cytokines, IL-17 and IFN gamma (IFNÉ£). This review discusses these mechanisms and also highlights recent advances pointing to the peripheral transitional B-cell stage as a major juncture where transient autocrine IFNß expression by developing B-cells imprints a heightened susceptibility to external factors favoring differentiation into autoantibody-producing plasmablasts. Recent studies highlight transitional B-cell heterogeneity as a determinant of intrinsic resistance or susceptibility to tolerance loss through the shaping of B-cell responsiveness to cytokines and other environment factors.
Assuntos
Autoanticorpos/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Tolerância Imunológica/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Linfócitos T Auxiliares-Indutores/imunologiaRESUMO
Here, we report a case of atopic dermatitis (AD) in a patient who received biweekly doses of dupilumab, an antibody against the IL-4 receptor α chain (IL-4Rα). Single cell RNA-sequencing showed that naïve B cells expressed the highest levels of IL4R compared to other B cell subpopulations. Compared to controls, the dupilumab-treated patient exhibited diminished percentages of IL4R+IGHD+ naïve B cells and down-regulation of IL4R, FCER2 (CD23), and IGHD. Dupilumab treatment resulted in upregulation of genes associated with apoptosis and inhibition of B cell receptor signaling and down-regulation of class-switch and memory B cell development genes. The dupilumab-treated patient exhibited a rapid decline in COVID-19 anti-spike and anti-receptor binding domain antibodies between 4 and 8 and 11 months post COVID-19 vaccination. Our data suggest that intact and persistent IL-4 signaling is necessary for maintaining robust survival and development of naïve B cells, and maintaining a long term vaccine response.
Assuntos
Tratamento Farmacológico da COVID-19 , Receptores de Interleucina-4 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Vacinas contra COVID-19 , Humanos , Interleucina-4 , RNA , Receptores de Antígenos de Linfócitos BRESUMO
IL-23 promotes autoimmune disease, including Th17 CD4 T cell development and autoantibody production. In this study, we show that a deficiency of the p19 component of IL-23 in the autoimmune BXD2 (BXD2-p19-/- ) mouse leads to a shift of the follicular T helper cell program from follicular T helper (Tfh)-IL-17 to Tfh-IFN-γ. Although the germinal center (GC) size and the number of GC B cells remained the same, BXD2-p19-/- mice exhibited a lower class-switch recombination (CSR) in the GC B cells, leading to lower serum levels of IgG2b. Single-cell transcriptomics analysis of GC B cells revealed that whereas Ifngr1, Il21r, and Il4r genes exhibited a synchronized expression pattern with Cxcr5 and plasma cell program genes, Il17ra exhibited a synchronized expression pattern with Cxcr4 and GC program genes. Downregulation of Ighg2b in BXD2-p19-/- GC B cells was associated with decreased expression of CSR-related novel base excision repair genes that were otherwise predominantly expressed by Il17ra + GC B cells in BXD2 mice. Together, these results suggest that although IL-23 is dispensable for GC formation, it is essential to promote a population of Tfh-IL-17 cells. IL-23 acts indirectly on Il17ra + GC B cells to facilitate CSR-related base excision repair genes during the dark zone phase of GC B cell development.
Assuntos
Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunoglobulina G/metabolismo , Interleucina-23/metabolismo , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p19/genética , Switching de Imunoglobulina , Imunoglobulina G/genética , Interferon gama/metabolismo , Interleucina-23/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Although multiple and overlapping mechanisms are ultimately responsible for the immunopathology observed in patients with systemic lupus erythematosus, autoreactive Abs secreted by autoreactive plasma cells (PCs) are considered to play a critical role in disease progression and immunopathology. Given that PCs derive from the germinal centers (GC), long-term dysregulated GC reactions are often associated with the development of spontaneous autoantibody responses and immunopathology in systemic lupus erythematosus patients. In this review, we summarize the emerging evidence concerning the roles of T follicular helper cells in regulating pathogenic GC and autoreactive PC responses in lupus.
Assuntos
Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoanticorpos/imunologia , Centro Germinativo/imunologia , Humanos , Plasmócitos/imunologiaRESUMO
Interleukin 17 (IL-17) is a cytokine associated with inflammation, autoimmunity and defense against some bacteria. Here we show that IL-17 can promote autoimmune disease through a mechanism distinct from its proinflammatory effects. As compared with wild-type mice, autoimmune BXD2 mice express more IL-17 and show spontaneous development of germinal centers (GCs) before they increase production of pathogenic autoantibodies. We show that blocking IL-17 signaling disrupts CD4+ T cell and B cell interactions required for the formation of GCs and that mice lacking the IL-17 receptor have reduced GC B cell development and humoral responses. Production of IL-17 correlates with upregulated expression of the genes Rgs13 and Rgs16, which encode regulators of G-protein signaling, and results in suppression of the B cell chemotactic response to the chemokine CXCL12. These findings suggest a mechanism by which IL-17 drives autoimmune responses by promoting the formation of spontaneous GCs.
Assuntos
Doenças Autoimunes/imunologia , Centro Germinativo/imunologia , Interleucina-17/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Quimiotaxia de Leucócito/imunologia , Interleucina-17/antagonistas & inibidores , Camundongos , Camundongos Mutantes , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismoRESUMO
In systemic lupus erythematosus (SLE), type I IFNs promote induction of type I IFN-stimulated genes (ISG) and can drive B cells to produce autoantibodies. Little is known about the expression of distinct type I IFNs in lupus, particularly high-affinity IFN-ß. Single-cell analyses of transitional B cells isolated from SLE patients revealed distinct B cell subpopulations, including type I IFN producers, IFN responders, and mixed IFN producer/responder clusters. Anti-Ig plus TLR3 stimulation of SLE B cells induced release of bioactive type I IFNs that could stimulate HEK-Blue cells. Increased levels of IFN-ß were detected in circulating B cells from SLE patients compared with controls and were significantly higher in African American patients with renal disease and in patients with autoantibodies. Together, the results identify type I IFN-producing and -responding subpopulations within the SLE B cell compartment and suggest that some patients may benefit from specific targeting of IFN-ß.
Assuntos
Subpopulações de Linfócitos B/fisiologia , Linfócitos B/fisiologia , Negro ou Afro-Americano , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Insuficiência Renal Crônica/imunologia , Autoanticorpos/sangue , Circulação Sanguínea , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Interferon Tipo I/genética , Espaço Intracelular , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/epidemiologia , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Análise de Célula Única , Transcriptoma , Estados Unidos/epidemiologiaRESUMO
The transitional stage of B cell development is a formative stage in the spleen where autoreactive specificities are censored as B cells gain immune competence, but the intrinsic and extrinsic factors regulating survival of transitional stage 1 (T1) B cells are unknown. We report that B cell expression of IFN-ß is required for optimal survival and TLR7 responses of transitional B cells in the spleen and was overexpressed in T1 B cells from BXD2 lupus-prone mice. Single-cell gene expression analysis of B6 Ifnb+/+ versus B6 Ifnb-/- T1 B cells revealed heterogeneous expression of Ifnb in wild-type B cells and distinct gene expression patterns associated with endogenous IFN-ß. Single-cell analysis of BXD2 T1 B cells revealed that Ifnb is expressed in early T1 B cell development with subsequent upregulation of Tlr7 and Ifna1 Together, these data suggest that T1 B cell expression of IFN-ß plays a key role in regulating responsiveness to external factors.
Assuntos
Linfócitos B/imunologia , Interferon beta/metabolismo , Nefrite Lúpica/imunologia , Células Precursoras de Linfócitos B/imunologia , Baço/imunologia , Animais , Subpopulações de Linfócitos B/imunologia , Diferenciação Celular , Sobrevivência Celular , Suscetibilidade a Doenças , Interferon beta-1a/genética , Interferon beta-1a/metabolismo , Interferon-alfa , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos , Análise de Célula Única , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismoRESUMO
Autoreactive B cells are associated with the development of several autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. The low frequency of these cells represents a major barrier to their analysis. Ag tetramers prepared from linear epitopes represent a promising strategy for the identification of small subsets of Ag-reactive immune cells. This is challenging given the requirement for identification and validation of linear epitopes and the complexity of autoantibody responses, including the broad spectrum of autoantibody specificities and the contribution of isotype to pathogenicity. Therefore, we tested a two-tiered peptide microarray approach, coupled with epitope mapping of known autoantigens, to identify and characterize autoepitopes using the BXD2 autoimmune mouse model. Microarray results were verified through comparison with established age-associated profiles of autoantigen specificities and autoantibody class switching in BXD2 and control (C57BL/6) mice and high-throughput ELISA and ELISPOT analyses of synthetic peptides. Tetramers were prepared from two linear peptides derived from two RNA-binding proteins (RBPs): lupus La and 70-kDa U1 small nuclear ribonucleoprotein. Flow cytometric analysis of tetramer-reactive B cell subsets revealed a significantly higher frequency and greater numbers of RBP-reactive marginal zone precursor, transitional T3, and PDL-2(+)CD80(+) memory B cells, with significantly elevated CD69 and CD86 observed in RBP(+) marginal zone precursor B cells in the spleens of BXD2 mice compared with C57BL/6 mice, suggesting a regulatory defect. This study establishes a feasible strategy for the characterization of autoantigen-specific B cell subsets in different models of autoimmunity and, potentially, in humans.
Assuntos
Autoantígenos/imunologia , Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ribonucleoproteínas Nucleares Pequenas/imunologia , Ribonucleoproteínas/imunologia , Animais , Autoanticorpos/imunologia , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Western Blotting , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B/imunologia , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Antígeno SS-BRESUMO
Marginal zone macrophages (MZMs) act as a barrier to entry of circulating apoptotic debris into the follicles of secondary lymphoid organs. In autoimmune BXD2 mice, there is a progressive reduction in the function and numbers of MZMs. Absence of MZMs results in retention of apoptotic cell (AC) debris within the marginal zone (MZ) and increased loading of AC Ags on MZ B cells and MZ-precursor (MZ-P) B cells. The MZ-P B cells are capable of translocating the AC Ags to the follicular zone and stimulating T cells. Both MZMs and MZ-P B cells from BXD2 mice express low levels of tolerogenic signals and high levels of inflammatory signals. Thus, the current study suggests a multifaceted mechanism in which MZMs maintain tolerance to apoptotic autoantigens and suppress their translocation to follicles. Lack of clearance of apoptotic debris by MZMs drives follicular Ag-transportation by MZ-P B cells to stimulate an autoimmune response.
Assuntos
Apoptose/imunologia , Autoantígenos/imunologia , Macrófagos/imunologia , Animais , Autoimunidade/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Movimento Celular/imunologia , Tolerância Imunológica/imunologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Germinal centers (GCs) provide a microenvironment that promotes and regulates the interactions of B cells with follicular Th (TFH) cells. In this study, we show that there are significantly higher frequencies of CXCR5(+)ICOS(+) TFH cells in autoimmune BXD2 mice, and these cells express both IL-21R and IL-17RA. Although IL-17 and IL-21 are both important for the formation of spontaneous GCs and development of pathogenic autoantibodies, IL-21, but not IL-17, is required for the proper development of TFH cells in BXD2 mice. The total numbers of TFH cells and their ability to induce B cell responses in vitro were not affected by a deficiency of IL-17RA in BXD2-Il17ra(-/-) mice, the majority of CXCR5(+) TFH cells from BXD2-Il17ra(-/-) mice were, however, not localized in the GC light zone (LZ). Interruption of IL-17 signaling, either acutely by AdIL-17R:Fc or chronically by Il17ra(-/-), disrupted TFH-B interactions and abrogated the generation of autoantibody-forming B cells in BXD2 mice. IL-17 upregulated the expression of regulator of G-protein signaling 16 (RGS16) to promote the ability of TFH to form conjugates with B cells, which was abolished in TFH cells from BXD2-Rgs16(-/-) mice. The results suggests that IL-17 is an extrinsic stop signal that it acts on postdifferentiated IL-17RA(+) TFH to enable its interaction with responder B cells in the LZ niche. These data suggest a novel concept that TFH differentiation and its stabilization in the LZ are two separate checkpoints and that IL-21 and IL-17 act at each checkpoint to enable pathogenic GC development.
Assuntos
Autoanticorpos/biossíntese , Subpopulações de Linfócitos B/imunologia , Centro Germinativo/imunologia , Interleucina-17/imunologia , Interleucinas/imunologia , Receptores de Interleucina-17/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Transferência Adotiva , Animais , Movimento Celular , Microambiente Celular/imunologia , Técnicas de Cocultura , Cruzamentos Genéticos , Centro Germinativo/ultraestrutura , Haptenos/imunologia , Imunoglobulina G/imunologia , Rim/patologia , Cooperação Linfocítica/imunologia , Linfopoese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrofenóis/imunologia , Fenilacetatos/imunologia , Receptores de Interleucina-17/deficiênciaRESUMO
Type I IFNs (IFN-α and IFN-ß) and type II IFN (IFN-γ) mediate both regulation and inflammation in multiple sclerosis, neuromyelitis optica, and in experimental autoimmune encephalomyelitis (EAE). However, the underlying mechanism for these Janus-like activities of type I and II IFNs in neuroinflammation remains unclear. Although endogenous type I IFN signaling provides a protective response in neuroinflammation, we find that when IFN-γ signaling is ablated, type I IFNs drive inflammation, resulting in exacerbated EAE. IFN-γ has a disease stage-specific opposing function in EAE. Treatment of mice with IFN-γ during the initiation phase of EAE leads to enhanced severity of disease. In contrast, IFN-γ treatment during the effector phase attenuated disease. This immunosuppressive activity of IFN-γ required functional type I IFN signaling. In IFN-α/ß receptor-deficient mice, IFN-γ treatment during effector phase of EAE exacerbated disease. Using an adoptive transfer EAE model, we found that T cell-intrinsic type I and II IFN signals are simultaneously required to establish chronic EAE by encephalitogenic Th1 cells. However, in Th17 cells loss of either IFN signals leads to the development of a severe chronic disease. The data imply that type I and II IFN signals have independent but nonredundant roles in restraining encephalitogenic Th17 cells in vivo. Collectively, our data show that type I and II IFNs function in an integrated manner to regulate pathogenesis in EAE.
Assuntos
Encefalomielite Autoimune Experimental/imunologia , Interferon Tipo I/imunologia , Interferon gama/imunologia , Transferência Adotiva , Animais , Encefalomielite Autoimune Experimental/metabolismo , Imuno-Histoquímica , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Células Th17/imunologiaRESUMO
OBJECTIVE: Bidirectional interactions between granulocyte-macrophage colony-stimulating factor-positive (GM-CSF+) T cells and interferon regulatory factor 5-positive (IRF-5+) macrophages play a major role in autoimmunity. In the absence of SH2 domain-containing phosphatase 1 (SHP-1), GM-CSF-stimulated cells are resistant to death receptor (DR)-mediated apoptosis. The objective of this study was to determine whether TRA-8, an anti-DR5 agonistic antibody, can eliminate inflammatory macrophages and CD4 T cells in the SHP-1-deficient condition. METHODS: Ubiquitous Cre (Ubc.Cre) human/mouse-chimeric DR5-transgenic mice were crossed with viable SHP-1-defective motheaten (mev/mev) mice. TRA-8 was administered weekly for up to 4 weeks. The clinical scores, histopathologic severity, and macrophage and CD4 T cell phenotypes were evaluated. The role of TRA-8 in depleting inflammatory macrophages and CD4 T cells was also evaluated, using synovial fluid obtained from patients with rheumatoid arthritis (RA). RESULTS: The levels of inflammatory macrophages (interleukin-23-positive [IL-23+] IRF-5+) and CD4 T cells (IL-17+ GM-CSF+) were elevated in mev/mev mice. In DR5-transgenic mev/mev mice, DR5 expression was up-regulated in these 2 cell populations. TRA-8 treatment depleted these cell populations and resulted in a significant reduction in inflammation and in the titers of autoantibodies. In synovial cells from patients with RA, the expression of IRF5 and DR5 was negatively correlated with the expression of PTPN6. TRA-8, but not TRAIL, suppressed RA inflammatory macrophages and Th17 cells under conditions in which the expression of SHP-1 is low. CONCLUSION: In contrast to TRAIL, which lacks the capability to counteract the survival signal in the absence of SHP-1, TRA-8 eliminated both IRF-5+ IL-23+ M1 macrophages and pathogenic GM-CSF+ IL-17+ CD4 T cells in a SHP-1-independent manner. The results of the current study suggest that TRA-8 can deplete inflammatory cell populations that result from a hyperactive GM-CSF/IRF-5 axis.
Assuntos
Artrite Reumatoide/patologia , Interleucina-23/metabolismo , Macrófagos/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/deficiência , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Células Th1/patologia , Células Th17/patologia , Adulto , Idoso , Animais , Anticorpos Monoclonais/farmacologia , Artrite Reumatoide/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Fatores Reguladores de Interferon/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Células Th1/metabolismo , Células Th17/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
OBJECTIVE: Regulator of G protein signaling (RGS) proteins inhibit chemokine signaling by desensitizing G protein-coupled receptor signals. This study was undertaken to determine the mechanisms by which RGS13 promotes the generation of pathogenic autoantibodies in germinal centers (GCs), using BXD2-Rgs13-/- mice. METHODS: Confocal and light microscopy imaging techniques were used to determine the location of cells that express RGS13 and activation-induced cytidine deaminase (AID) in the mouse spleen, and the number of plasmablasts. The levels of GC and plasma cell program transcripts in GC B cells were determined by real-time quantitative polymerase chain reaction (qPCR). Differential interleukin-17 (IL-17)-mediated expression of RGS13 in GC versus non-GC B cells was analyzed using A20 and 70Z/3 B cells. RESULTS: In the spleens of BXD2 mice, RGS13 was mainly expressed by GC B cells and was stimulated by IL-17 but not IL-21. IL-17 up-regulated RGS13 in A20 GC cells but not 70Z/3 non-GC B cells. BXD2- Rgs13-/- mice exhibited smaller GCs and lower AID levels, suggesting lower somatic hypermutation and affinity maturation. However, GC B cells from BXD2- Rgs13-/- mice showed increased levels of IgMbright plasmablasts, up-regulation of the genes encoding plasma program, including interferon regulatory factor 4, B lymphocyte-induced maturation protein 1, and X-box binding protein 1 and the p-CREB target genes Fosb and Obf1, and down-regulation of the GC program genes Aid, Pax5, and Bach2 compared to BXD2 mice. BXD2-Rgs13-/- mice had lower titers of IgG autoantibodies and IgG deposits in the glomeruli, suggesting reduced autoantibody pathogenicity. CONCLUSION: RGS13 deficiency is associated with a reduction in GC program genes and the exit of fewer pathogenic IgM plasmablasts in BXD2 mice. Our findings indicate that prolonged GC program, mediated by up-regulation of RGS13, enhances AID expression and enables the generation of pathogenic autoantibodies in autoreactive GCs.
Assuntos
Autoanticorpos/metabolismo , Linfócitos B/metabolismo , Centro Germinativo/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/patologia , Interleucina-17/farmacologia , Interleucinas/farmacologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas RGS/deficiência , Proteínas RGS/genética , Proteínas RGS/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
Patterns of gene expression in the central nervous system are highly variable and heritable. This genetic variation among normal individuals leads to considerable structural, functional and behavioral differences. We devised a general approach to dissect genetic networks systematically across biological scale, from base pairs to behavior, using a reference population of recombinant inbred strains. We profiled gene expression using Affymetrix oligonucleotide arrays in the BXD recombinant inbred strains, for which we have extensive SNP and haplotype data. We integrated a complementary database comprising 25 years of legacy phenotypic data on these strains. Covariance among gene expression and pharmacological and behavioral traits is often highly significant, corroborates known functional relations and is often generated by common quantitative trait loci. We found that a small number of major-effect quantitative trait loci jointly modulated large sets of transcripts and classical neural phenotypes in patterns specific to each tissue. We developed new analytic and graph theoretical approaches to study shared genetic modulation of networks of traits using gene sets involved in neural synapse function as an example. We built these tools into an open web resource called WebQTL that can be used to test a broad array of hypotheses.
Assuntos
Regulação da Expressão Gênica , Fenômenos Fisiológicos do Sistema Nervoso , Locos de Características Quantitativas , Animais , Epistasia Genética , Haplótipos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genéticaRESUMO
OBJECTIVE: To determine the therapeutic efficacy and immunomodulatory effect of an anti-human death receptor 5 (DR5) antibody, TRA-8, in eliminating macrophage subsets in a mouse model of type II collagen-induced arthritis (CIA). METHODS: A human/mouse-chimeric DR5-transgenic mouse, under the regulation of a mouse 3-kb promoter and a loxP-flanked STOP cassette, was generated and crossed with an ubiquitous Cre (Ubc.Cre) mouse and a lysozyme M-Cre (LysM.Cre)-transgenic mouse to achieve inducible or macrophage-specific expression. Chicken type II collagen was used to induce CIA in mice, which were then treated with an anti-human DR5 antibody, TRA-8. Clinical scores, histopathologic severity, macrophage apoptosis and depletion, and T cell subset development were evaluated. RESULTS: In human/mouse DR5-transgenic Ubc.Cre mice with CIA, transgenic DR5 was most highly expressed on CD11b+ macrophages, with lower expression on CD4+ T cells. In human/mouse DR5-transgenic LysM.Cre mice, transgenic DR5 was restrictively expressed on macrophages. Both in vivo near-infrared imaging of caspase activity and TUNEL staining demonstrated that TRA-8 rapidly induced apoptosis of macrophages in inflamed synovium. Depletion of pathogenic macrophages by TRA-8 led to significantly reduced clinical scores for arthritis; decreased macrophage infiltration, synovial hyperplasia, osteoclast formation, joint destruction, cathepsin activity, and inflammatory cytokine expression in joints; reduced numbers of Th17 cells; and an increased number of Treg cells in draining lymph nodes. CONCLUSION: The anti-human DR5 antibody TRA-8 was efficacious in reducing the severity of arthritis via targeted depletion of macrophages and immunomodulation. Our data provide preclinical evidence that TRA-8 is a potential novel biologic agent for rheumatoid arthritis therapy.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Apoptose/imunologia , Artrite Experimental/tratamento farmacológico , Macrófagos/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Apoptose/efeitos dos fármacos , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Modelos Animais de Doenças , Humanos , Articulações/efeitos dos fármacos , Articulações/imunologia , Macrófagos/efeitos dos fármacos , Camundongos , Índice de Gravidade de Doença , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
Macrophages play a central role in the pathogenesis of rheumatoid arthritis (RA). There is an imbalance of inflammatory and antiinflammatory macrophages in RA synovium. Although the polarization and heterogeneity of macrophages in RA have not been fully uncovered, the identity of macrophages in RA can potentially be defined by their products, including the co-stimulatory molecules, scavenger receptors, different cytokines/chemokines and receptors, and transcription factors. In the last decade, efforts to understand the polarization, apoptosis regulation, and novel signaling pathways in macrophages, as well as how distinct activated macrophages influence disease progression, have led to strategies that target macrophages with varied specificity and selectivity. Major targets that are related to macrophage development and apoptosis include TNF-α, IL-1, IL-6, GM-CSF, M-CSF, death receptor 5 (DR5), Fas, and others, as listed in Table 1. Combined data from clinical, preclinical, and animal studies of inhibitors of these targets have provided valuable insights into their roles in the disease progression and, subsequently, have led to the evolving therapeutic paradigms in RA. In this review, we propose that reestablishment of macrophage equilibrium by inhibiting the development of, and/or eliminating, the proinflammatory macrophages will be an effective therapeutic approach for RA and other autoimmune diseases.
Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Membrana Sinovial/efeitos dos fármacos , Animais , Antirreumáticos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Artrite Reumatoide/imunologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Membrana Sinovial/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismoRESUMO
OBJECTIVE: To investigate the role of CD86(high) marginal zone (MZ) precursor B cells in type I interferon (IFN)-induced T cell-dependent responses in autoimmune BXD2 mice. METHODS: Confocal microscopic imaging was used to determine the location of plasmacytoid dendritic cells (DCs), MZ precursor B cells, and CD4 T cells in the spleens of BXD2 and BXD2-Ifnar(-/-) mice. Immunohistochemical staining was used to determine IgG(bright) cells in the spleens of BXD2 and BXD2-Ifnar(-/-) mice. Enzyme-linked immunosorbent assay was used to determine serum levels of IFNα and autoantibodies, and 4-hydroxy-3-nitrophenylacetyl hapten (NP)-chicken γ-globulin (CGG) (NP-CGG)- or NP-Ficoll-induced anti-NP2 antibody titers. Real-time quantitative polymerase chain reaction was used to determine the levels of type I IFN transcripts. T cell proliferation was measured using (3) H-thymidine. The expression of CD86 and CD80 was determined by fluorescence-activated cell sorting analysis. RESULTS: The deletion of type I IFN receptor abrogated the development of IgG(bright) cells and suppressed a T cell-dependent antibody response. Type I IFN signaling was associated with the expression of CD86, but not CD80, on follicular, MZ, and MZ precursor B cells. However, MZ precursor B cells demonstrated the highest expression of CD86 and the highest capacity for T cell costimulation with intact type I IFN receptor. This effect was blocked by an antibody that neutralizes CD86. In IFN receptor-intact BXD2 mouse spleens, MZ precursor B cells clustered at the T cell-B cell border. CD86 deletion suppressed germinal center formation, autoantibody production, and development of autoimmune diseases in BXD2 mice. CONCLUSION: Type I IFN can promote autoimmune responses in BXD2 mice through up-regulation of CD86(high) expression on MZ precursor B cells and trafficking of MZ precursor B cells to the T cell-B cell border to provide costimulation of CD4 T cells.