Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 148(4): 702-15, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22341443

RESUMO

Kes1, and other oxysterol-binding protein superfamily members, are involved in membrane and lipid trafficking through trans-Golgi network (TGN) and endosomal systems. We demonstrate that Kes1 represents a sterol-regulated antagonist of TGN/endosomal phosphatidylinositol-4-phosphate signaling. This regulation modulates TOR activation by amino acids and dampens gene expression driven by Gcn4, the primary transcriptional activator of the general amino acid control regulon. Kes1-mediated repression of Gcn4 transcription factor activity is characterized by nonproductive Gcn4 binding to its target sequences, involves TGN/endosome-derived sphingolipid signaling, and requires activity of the cyclin-dependent kinase 8 (CDK8) module of the enigmatic "large Mediator" complex. These data describe a pathway by which Kes1 integrates lipid metabolism with TORC1 signaling and nitrogen sensing.


Assuntos
Endossomos/metabolismo , Metabolismo dos Lipídeos , Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Autofagia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo , Fatores de Transcrição/metabolismo
2.
PLoS Genet ; 17(8): e1009780, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34460824

RESUMO

Translocation of secretory and integral membrane proteins across or into the ER membrane occurs via the Sec61 complex, a heterotrimeric protein complex possessing two essential sub-units, Sec61p/Sec61α and Sss1p/Sec61γ and the non-essential Sbh1p/Sec61ß subunit. In addition to forming a protein conducting channel, the Sec61 complex maintains the ER permeability barrier, preventing flow of molecules and ions. Loss of Sec61 integrity is detrimental and implicated in the progression of disease. The Sss1p/Sec61γ C-terminus is juxtaposed to the key gating module of Sec61p/Sec61α and is important for gating the translocon. Inspection of the cancer genome database identifies six mutations in highly conserved amino acids of Sec61γ/Sss1p. We identify that five out of the six mutations identified affect gating of the ER translocon, albeit with varying strength. Together, we find that mutations in Sec61γ that arise in malignant cells result in altered translocon gating dynamics, this offers the potential for the translocon to represent a target in co-therapy for cancer treatment.


Assuntos
Canais de Translocação SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos/genética , Transporte Biológico , Permeabilidade da Membrana Celular/genética , Permeabilidade da Membrana Celular/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Neoplasias/genética , Neoplasias/metabolismo , Transporte Proteico/genética , Canais de Translocação SEC/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293008

RESUMO

Endoplasmic reticulum (ER) function is dedicated to multiple essential processes in eukaryotes, including the processing of secretory proteins and the biogenesis of most membrane lipids. These roles implicate a heavy burden to the organelle, and it is thus prone to fluctuations in the homeostasis of molecules which govern these processes. The unfolded protein response (UPR) is a general ER stress response tasked with maintaining the ER for optimal function, mediated by the master activator Ire1. Ire1 is an ER transmembrane protein that initiates the UPR, forming characteristic oligomers in response to irregularities in luminal protein folding and in the membrane lipid environment. The role of lipids in regulating the UPR remains relatively obscure; however, recent research has revealed a potent role for sphingolipids in its activity. Here, we identify a major role for the oxysterol-binding protein Kes1, whose activity is of consequence to the sphingolipid profile in cells resulting in an inhibition of UPR activity. Using an mCherry-tagged derivative of Ire1, we observe that this occurs due to inhibition of Ire1 to form oligomers. Furthermore, we identify that a sphingolipid presence is required for Ire1 activity, and that specific sphingolipid profiles are of major consequence to Ire1 function. In addition, we highlight cases where Ire1 oligomerization is absent despite an active UPR, revealing a potential mechanism for UPR induction where Ire1 oligomerization is not necessary. This work provides a basis for the role of sphingolipids in controlling the UPR, where their metabolism harbors a crucial role in regulating its onset.


Assuntos
Oxisteróis , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/genética , Esfingolipídeos , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático , Análise por Conglomerados , Endorribonucleases/metabolismo
4.
J Biol Chem ; 295(7): 2125-2134, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31848225

RESUMO

The endoplasmic reticulum (ER) is the entry point to the secretory pathway and major site of protein biogenesis. Translocation of secretory and integral membrane proteins across or into the ER membrane occurs via the evolutionarily conserved Sec61 complex, a heterotrimeric channel that comprises the Sec61p/Sec61α, Sss1p/Sec61γ, and Sbh1p/Sec61ß subunits. In addition to forming a protein-conducting channel, the Sec61 complex also functions to maintain the ER permeability barrier, preventing the mass free flow of essential ER-enriched molecules and ions. Loss in Sec61 integrity is detrimental and implicated in the progression of disease. The Sss1p/Sec61γ C terminus is juxtaposed to the key gating module of Sec61p/Sec61α, and we hypothesize it is important for gating the ER translocon. The ER stress response was found to be constitutively induced in two temperature-sensitive sss1 mutants (sss1ts ) that are still proficient to conduct ER translocation. A screen to identify intergenic mutations that allow for sss1ts cells to grow at 37 °C suggests the ER permeability barrier to be compromised in these mutants. We propose the extreme C terminus of Sss1p/Sec61γ is an essential component of the gating module of the ER translocase and is required to maintain the ER permeability barrier.


Assuntos
Retículo Endoplasmático/genética , Biossíntese de Proteínas/genética , Canais de Translocação SEC/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos/genética , Estresse do Retículo Endoplasmático/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação/genética , Permeabilidade , Transporte Proteico/genética , Canais de Translocação SEC/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
5.
J Biol Chem ; 294(50): 19081-19098, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31690622

RESUMO

Phosphatidylinositol-transfer proteins (PITPs) are key regulators of lipid signaling in eukaryotic cells. These proteins both potentiate the activities of phosphatidylinositol (PtdIns) 4-OH kinases and help channel production of specific pools of phosphatidylinositol 4-phosphate (PtdIns(4)P) dedicated to specific biological outcomes. In this manner, PITPs represent a major contributor to the mechanisms by which the biological outcomes of phosphoinositide are diversified. The two-ligand priming model proposes that the engine by which Sec14-like PITPs potentiate PtdIns kinase activities is a heterotypic lipid-exchange cycle where PtdIns is a common exchange substrate among the Sec14-like PITP family, but the second exchange ligand varies with the PITP. A major prediction of this model is that second-exchangeable ligand identity will vary from PITP to PITP. To address the heterogeneity in the second exchange ligand for Sec14-like PITPs, we used structural, computational, and biochemical approaches to probe the diversities of the lipid-binding cavity microenvironments of the yeast Sec14-like PITPs. The collective data report that yeast Sec14-like PITP lipid-binding pockets indeed define diverse chemical microenvironments that translate into differential ligand-binding specificities across this protein family.


Assuntos
Proteínas de Transporte/metabolismo , Lipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Sítios de Ligação , Proteínas de Transporte/química , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
6.
Proc Natl Acad Sci U S A ; 114(47): 12489-12494, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109265

RESUMO

BiP (Kar2 in yeast) is an essential Hsp70 chaperone and master regulator of endoplasmic reticulum (ER) function. BiP's activity is regulated by its intrinsic ATPase activity that can be stimulated by two different nucleotide exchange factors, Sil1 and Lhs1. Both Sil1 and Lhs1 are glycoproteins, but how N-glycosylation regulates their function is not known. Here, we show that N-glycosylation of Sil1, but not of Lhs1, is diminished upon reductive stress. N-glycosylation of Sil1 is predominantly Ost3-dependent and requires a functional Ost3 CxxC thioredoxin motif. N-glycosylation of Lhs1 is largely Ost3-independent and independent of the CxxC motif. Unglycosylated Sil1 is not only functional but is more effective at rescuing loss of Lhs1 activity than N-glycosylated Sil1. Furthermore, substitution of the redox active cysteine pair C52 and C57 in the N terminus of Sil1 results in the Doa10-dependent ERAD of this mutant protein. We propose that reductive stress in the ER inhibits the Ost3-dependent N-glycosylation of Sil1, which regulates specific BiP functions appropriate to the needs of the ER under reductive stress.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Hexosiltransferases/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático , Proteínas Fúngicas/metabolismo , Glicosilação , Proteínas de Choque Térmico HSP70/metabolismo , Hexosiltransferases/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Oxirredução , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
J Lipid Res ; 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201632

RESUMO

This article has been withdrawn by the authors as part of this review overlapped with the contents of Pietrangelo A and Ridgway ND. 2018. Cellular and Molecular Life Sciences. 75; 3079-98.

8.
Compr Rev Food Sci Food Saf ; 17(4): 827-840, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33350119

RESUMO

In recent decades, the demand for ready-to-eat (RTE) food items prepared by the food catering sector has increased together with the value of cook-serve, cook-chill, and cook-freeze food products. The technologies by which foods are cooked, chilled, refrigerated for storage, and reheated before serving are of prime importance to maintain safety. Packaging materials and food containers play an important role in influencing the cooling rate of RTE foods. Food items that are prepared using improper technologies and inappropriate packaging materials may be contaminated with foodborne pathogens. Numerous research studies have shown the impact of deficient cooling technologies on the survival and growth of foodborne pathogens, which may subsequently pose a threat to public health. The operating temperatures and cooling rates of the cooling techniques applied must be appropriate to inhibit the growth of pathogens. Food items must be stored outside the temperature danger zone, which is between 5 and 60 °C, in order to inhibit the growth of these pathogens. The cooling techniques used to prepare potentially hazardous foods, such as cooked meat, rice, and pasta, must be properly applied and controlled to ensure food safety. This paper critically reviews the effects of cooling and its relationship to food containers on the safety of RTE foods produced and sold through the food service industry.

10.
Microbiology (Reading) ; 162(6): 1023-1036, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26978567

RESUMO

The HOG1 mitogen-activated protein kinase (MAPK) pathway is activated through two-component histidine kinase (HK) signalling. This pathway was first characterized in the budding yeast Saccharomyces cerevisiae as a regulator of osmotolerance. The fungus Parastagonospora nodorum is the causal agent of septoria nodorum blotch of wheat. This pathogen uses host-specific effectors in tandem with general pathogenicity mechanisms to carry out its infection process. Genes showing strong sequence homology to S. cerevisiae HOG1 signalling pathway genes have been identified in the genome of P. nodorum. In this study, we examined the role of the pathway in the virulence of P. nodorum on wheat by disrupting putative pathway component genes: HOG1 (SNOG_13296) MAPK and NIK1 (SNOG_11631) hybrid HK. Mutants deleted in NIK1 and HOG1 were insensitive to dicarboximide and phenylpyrrole fungicides, but not a fungicide that targets ergosterol biosynthesis. Furthermore, both Δnik1 and Δhog1 mutants showed increased sensitivity to hyperosmotic stress. However, HOG1, but not NIK1, is required for tolerance to elevated temperatures. HOG1 deletion conferred increased tolerance to 6-methoxy-2-benzoxazolinone, a cereal phytoalexin. This suggests that the HOG1 signalling pathway is not exclusively associated with NIK1. Both Δnik1 and Δhog1 mutants retained the ability to infect and cause necrotic lesions on wheat. However, we observed that the Δhog1 mutation resulted in reduced production of pycnidia, asexual fruiting bodies that facilitate spore dispersal during late infection. Our study demonstrated the overlapping and distinct roles of a HOG1 MAPK and two-component HK signalling in P. nodorum growth and pathogenicity.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Farmacorresistência Fúngica/genética , Resposta ao Choque Térmico/genética , Histidina Quinase/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Triticum/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Benzidinas/farmacologia , Benzoxazóis/farmacologia , Fungicidas Industriais/farmacologia , Deleção de Genes , Histidina Quinase/metabolismo , Temperatura Alta , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/genética , Pirróis/farmacologia , Sesquiterpenos/farmacologia , Transdução de Sinais/genética , Fitoalexinas
11.
Nat Chem Biol ; 10(1): 76-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24292071

RESUMO

Sec14-like phosphatidylinositol transfer proteins (PITPs) integrate diverse territories of intracellular lipid metabolism with stimulated phosphatidylinositol-4-phosphate production and are discriminating portals for interrogating phosphoinositide signaling. Yet, neither Sec14-like PITPs nor PITPs in general have been exploited as targets for chemical inhibition for such purposes. Herein, we validate what is to our knowledge the first small-molecule inhibitors (SMIs) of the yeast PITP Sec14. These SMIs are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs) and are effective inhibitors in vitro and in vivo. We further establish that Sec14 is the sole essential NPPM target in yeast and that NPPMs exhibit exquisite targeting specificities for Sec14 (relative to related Sec14-like PITPs), propose a mechanism for how NPPMs exert their inhibitory effects and demonstrate that NPPMs exhibit exquisite pathway selectivity in inhibiting phosphoinositide signaling in cells. These data deliver proof of concept that PITP-directed SMIs offer new and generally applicable avenues for intervening with phosphoinositide signaling pathways with selectivities superior to those afforded by contemporary lipid kinase-directed strategies.


Assuntos
Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Transdução de Sinais , Ligação Proteica , Relação Estrutura-Atividade
12.
Trends Biochem Sci ; 35(3): 150-60, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19926291

RESUMO

Lipid signaling pathways define central mechanisms for cellular regulation. Productive lipid signaling requires an orchestrated coupling between lipid metabolism, lipid organization and the action of protein machines that execute appropriate downstream reactions. Using membrane trafficking control as primary context, we explore the idea that the Sec14-protein superfamily defines a set of modules engineered for the sensing of specific aspects of lipid metabolism and subsequent transduction of 'sensing' information to a phosphoinositide-driven 'execution phase'. In this manner, the Sec14 superfamily connects diverse territories of the lipid metabolome with phosphoinositide signaling in a productive 'crosstalk' between these two systems. Mechanisms of crosstalk, by which non-enzymatic proteins integrate metabolic cues with the action of interfacial enzymes, represent unappreciated regulatory themes in lipid signaling.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Modelos Moleculares , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
13.
Subcell Biochem ; 59: 271-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22374094

RESUMO

An interface coordinating lipid metabolism with proteins that regulate membrane trafficking is necessary to regulate Golgi morphology and dynamics. Such an interface facilitates the membrane deformations required for vesicularization, forms platforms for protein recruitment and assembly on appropriate sites on a membrane surface and provides lipid co-factors for optimal protein activity in the proper spatio-temporally regulated manner. Importantly, Sec14 and Sec14-like proteins are a unique superfamily of proteins that sense specific aspects of lipid metabolism, employing this information to potentiate phosphoinositide production. Therefore, Sec14 and Sec14 like proteins form central conduits to integrate multiple aspects of lipid metabolism with productive phosphoinositide signaling.


Assuntos
Proteínas de Transporte/metabolismo , Complexo de Golgi/fisiologia , Metabolismo dos Lipídeos , Fosfatos de Fosfatidilinositol/biossíntese , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/genética , Diglicerídeos/metabolismo , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
14.
Traffic ; 11(9): 1151-67, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20545905

RESUMO

Phosphatidylinositol transfer proteins (PITPs) in yeast co-ordinate lipid metabolism with the activities of specific membrane trafficking pathways. The structurally unrelated metazoan PITPs (mPITPs), on the other hand, are an under-investigated class of proteins. It remains unclear what biological activities mPITPs discharge, and the mechanisms by which these proteins function are also not understood. The soluble class 1 mPITPs include the PITPalpha and PITPbeta isoforms. Of these, the beta-isoforms are particularly poorly characterized. Herein, we report the use of zebrafish as a model vertebrate for the study of class 1 mPITP biological function. Zebrafish express PITPalpha and PITPbeta-isoforms (Pitpna and Pitpnb, respectively) and a novel PITPbeta-like isoform (Pitpng). Pitpnb expression is particularly robust in double cone cells of the zebrafish retina. Morpholino-mediated protein knockdown experiments demonstrate Pitpnb activity is primarily required for biogenesis/maintenance of the double cone photoreceptor cell outer segments in the developing retina. By contrast, Pitpna activity is essential for successful navigation of early developmental programs. This study reports the initial description of the zebrafish class 1 mPITP family, and the first analysis of PITPbeta function in a vertebrate.


Assuntos
Proteínas de Transferência de Fosfolipídeos/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Peixe-Zebra , Animais , Modelos Animais , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/fisiologia , Isoformas de Proteínas , Saccharomyces cerevisiae/genética
15.
Biochem Soc Trans ; 40(2): 469-73, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22435832

RESUMO

The Kes1 OSBP (oxysterol-binding protein) is a key regulator of membrane trafficking through the TGN (trans-Golgi network) and endosomal membranes. We demonstrated recently that Kes1 acts as a sterol-regulated rheostat for TGN/endosomal phosphatidylinositol 4-phosphate signalling. Kes1 utilizes its dual lipid-binding activities to integrate endosomal lipid metabolism with TORC1 (target of rapamycin complex 1)-dependent proliferative pathways and transcriptional control of nutrient signalling.


Assuntos
Família Multigênica , Receptores de Esteroides/metabolismo , Animais , Endossomos/metabolismo , Humanos , Receptores de Esteroides/química , Transdução de Sinais , Esteróis/metabolismo , Rede trans-Golgi/metabolismo
16.
J Biol Chem ; 285(42): 32671-7, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20709746

RESUMO

Protein translocation across the endoplasmic reticulum membrane occurs at the Sec61 translocon. This has two essential subunits, the channel-forming multispanning membrane protein Sec61p/Sec61α and the tail-anchored Sss1p/Sec61γ, which has been proposed to "clamp" the channel. We have analyzed the function of Sss1p using a series of domain mutants and found that both the cytosolic and transmembrane clamp domains of Sss1p are essential for protein translocation. Our data reveal that the cytosolic domain is required for Sec61p interaction but that the transmembrane clamp domain is required to complete activation of the translocon after precursor targeting to Sec61p.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Canais de Translocação SEC , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
17.
Curr Opin Cell Biol ; 59: 58-72, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31039522

RESUMO

Recent years have witnessed the evolution of the cell biology of lipids into an extremely active area of investigation. Deciphering the involvement of lipid metabolism and lipid signaling in membrane trafficking pathways defines a major nexus of contemporary experimental activity on this front. Significant effort in that direction is invested in understanding the trans-Golgi network/endosomal system where unambiguous connections between membrane trafficking and inositol lipid and phosphatidylcholine metabolism were first discovered. However, powered by new advances in contemporary cell biology, the march of science is rapidly expanding that window of inquiry to include ever more diverse arms of the lipid metabolome, and to include other compartments of the secretory pathway as well.


Assuntos
Endossomos/metabolismo , Metabolismo dos Lipídeos/genética , Transporte Proteico/genética , Rede trans-Golgi/metabolismo , Humanos
18.
Biochim Biophys Acta ; 1771(6): 727-36, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17512778

RESUMO

A central principle of signal transduction is the appropriate control of the process so that relevant signals can be detected with fine spatial and temporal resolution. In the case of lipid-mediated signaling, organization and metabolism of specific lipid mediators is an important aspect of such control. Herein, we review the emerging evidence regarding the roles of Sec14-like phosphatidylinositol transfer proteins (PITPs) in the action of intracellular signaling networks; particularly as these relate to membrane trafficking. Finally, we explore developing ideas regarding how Sec14-like PITPs execute biological function. As Sec14-like proteins define a protein superfamily with diverse lipid (or lipophile) binding capabilities, it is likely these under-investigated proteins will be ultimately demonstrated as a ubiquitously important set of biological regulators whose functions influence a large territory in the signaling landscape of eukaryotic cells.


Assuntos
Proteínas de Transporte/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Animais , Transporte Biológico , Cristalização , Humanos , Redes e Vias Metabólicas , Modelos Moleculares , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Ligação Proteica/fisiologia
19.
Dev Cell ; 44(3): 378-391.e5, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29396115

RESUMO

Kes1/Osh4 is a member of the conserved, but functionally enigmatic, oxysterol binding protein-related protein (ORP) superfamily that inhibits phosphatidylinositol transfer protein (Sec14)-dependent membrane trafficking through the trans-Golgi (TGN)/endosomal network. We now report that Kes1, and select other ORPs, execute cell-cycle control activities as functionally non-redundant inhibitors of the G1/S transition when cells confront nutrient-poor environments and promote replicative aging. Kes1-dependent cell-cycle regulation requires the Greatwall/MASTL kinase ortholog Rim15, and is opposed by Sec14 activity in a mechanism independent of Kes1/Sec14 bulk membrane-trafficking functions. Moreover, the data identify Kes1 as a non-histone target for NuA4 through which this lysine acetyltransferase co-modulates membrane-trafficking and cell-cycle activities. We propose the Sec14/Kes1 lipid-exchange protein pair constitutes part of the mechanism for integrating TGN/endosomal lipid signaling with cell-cycle progression and hypothesize that ORPs define a family of stage-specific cell-cycle control factors that execute tumor-suppressor-like functions.


Assuntos
Ciclo Celular/fisiologia , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Histona Acetiltransferases/metabolismo , Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Movimento Celular , Endossomos , Lipídeos/análise , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais
20.
Chem Phys Lipids ; 200: 42-61, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27353530

RESUMO

The Golgi complex constitutes a central way station of the eukaryotic endomembrane system, an intricate network of organelles engaged in control of membrane trafficking and the processing of various cellular components. Previous ideas of compartmental stability within this network are gradually being reshaped by concepts describing a biochemical continuum of hybrid organelles whose constitution is regulated by compartmental maturation. Membrane lipid composition and lipid signaling processes make fundamental contributions to compartmentalization strategies that are themselves critical for organizing cellular architecture and biochemical activities. Phosphatidylinositol transfer proteins (PITPs) are increasingly recognized as key regulators of membrane trafficking through the secretory pathway. They do so by coordinating lipid metabolism with lipid signaling, translating this information to core protein components of the membrane trafficking machinery. In this capacity, PITPs can be viewed as regulators of an essential lipid-protein interface of cisternal maturation. It is also now becoming appreciated, for the first time, that such an interface plays important roles in larger systems processes that link secretory pathway function with cell proliferation.


Assuntos
Complexo de Golgi/química , Complexo de Golgi/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Humanos , Proteínas de Transferência de Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA