Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am Nat ; 202(3): 322-336, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37606949

RESUMO

AbstractIn cannibalistic species, selection to avoid conspecifics may stem from the need to avoid being eaten or to avoid competition. Individuals may thus use conspecific cues to modulate their behavior to such threats. Yet the nature of variation for such cues remains elusive. Here, we use a half-sib/full-sib design to evaluate the contribution of (indirect) genetic or environmental effects to the behavioral response of the cannibalistic wolf spider Lycosa fasciiventris (Dufour, 1835) toward conspecific cues. Spiders showed variation in relative occupancy time, activity, and velocity on patches with or without conspecific cues, but direct genetic variance was found only for occupancy time. These three traits were correlated and could be lumped in a principal component: spiders spending more time in patches with conspecific cues moved less and more slowly in those areas. Genetic and/or environmental components of carapace width and weight loss in the social partner, which may reflect the quality and/or quantity of cues produced, were significantly correlated with this principal component, with larger partners causing focal individuals to move more slowly. Therefore, environmental and genetic trait variation in social partners may maintain trait diversity in focal individuals, even in the absence of direct genetic variation.


Assuntos
Aranhas , Animais , Aranhas/genética , Canibalismo , Exoesqueleto , Clima , Sinais (Psicologia)
2.
Heredity (Edinb) ; 126(4): 684-694, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33452465

RESUMO

The relative body size at which predators are willing to attack prey, a key trait for predator-prey interactions, is usually considered invariant. However, this ratio can vary widely among individuals or populations. Identifying the range and origin of such variation is key to understanding the strength and constraints on selection in both predators and prey. Still, these sources of variation remain largely unknown. We filled this gap by measuring the genetic, maternal and environmental variation of the maximum prey-to-predator size ratio (PPSRmax) in juveniles of the wolf spider Lycosa fasciiventris using a paternal half-sib split-brood design, in which each male was paired with two females and the offspring reared in two food environments: poor and rich. Each juvenile spider was then sequentially offered crickets of decreasing size and the maximum prey size killed was determined. We also measured body size and body condition of spiders upon emergence and just before the trial. We found low, but significant heritability (h2 = 0.069) and dominance and common environmental variance (d2 + 4c2 = 0.056). PPSRmax was also partially explained by body condition (during trial) but there was no effect of the rearing food environment. Finally, a maternal correlation between body size early in life and PPSRmax indicated that offspring born larger were less predisposed to feed on larger prey later in life. Therefore, PPSRmax, a central trait in ecosystems, can vary widely and this variation is due to different sources, with important consequences for changes in this trait in the short and long terms.


Assuntos
Comportamento Predatório , Aranhas , Animais , Tamanho Corporal , Ecossistema , Feminino , Masculino , Aranhas/genética
3.
J Anim Ecol ; 89(2): 334-346, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31494934

RESUMO

Shifts in densities of apex predators may indirectly affect fundamental ecosystem processes, such as decomposition, by altering patterns of cascading effects propagating through lower trophic levels. These top-down effects may interact with anthropogenic impacts, such as climate change, in largely unknown ways. We investigated how changes in densities of large predatory arthropods in forest leaf-litter communities altered lower trophic levels and litter decomposition. We conducted our experiment in soil communities that had experienced different levels of long-term average precipitation. We hypothesized that altering abundances of apex predators would have stronger effects on soil communities inhabiting dry forests, due to lower secondary productivity and greater resource overexploitation by lower trophic levels compared to wet forests. We experimentally manipulated abundances of the largest arthropod predators (apex predators) in field mesocosms replicated in the leaf-litter community of Iberian beech forests that differed in long-term mean annual precipitation by 25% (three dry forests with MAP < 1,250 mm and four wet forests with MAP > 1,400 mm). After one year, we assessed abundances of soil fauna in lower trophic levels and indirect impacts on leaf-litter decomposition using litter of understorey hazel, Corylus avellana. Reducing densities of large predators had a consistently negative effect on final abundances of the different trophic groups and several taxa within each group. Moreover, large predatory arthropods strongly impacted litter decomposition, and their effect interacted with the long-term annual rainfall experienced by the soil community. In the dry forests, a 50% reduction in the densities of apex predators was associated with a 50% reduction in decomposition. In wet forests, the same reduction in densities of apex soil predators did not alter the rate of litter decomposition. Our results suggest that predators may facilitate lower trophic levels by indirectly reducing competition and resource overexploitation, cascading effects that may be more pronounced in drier forests where conditions have selected for greater competitive ability and more rapid resource utilization. These findings thus provide insights into the functioning of soil invertebrate communities and their role in decomposition, as well as potential consequences of soil community responses to climate change.


Assuntos
Artrópodes , Solo , Animais , Ecossistema , Florestas , Folhas de Planta
4.
Insects ; 15(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667414

RESUMO

We present the description of a new species of Solifugae from the Iberian Peninsula, Gluvia brunnea sp. nov., which has been found so far in southeast Spain. The morphological description is accompanied by molecular and multiple factor analyses, jointly giving full support to the specific status of the taxon. Finally, we discuss the intraspecific variability of both species, G. dorsalis and G. brunnea sp. nov., and the recent history of the genus. We also discuss the usefulness of multiple factor analysis for quantitatively separating species, and we stress that some specimens of this new species were found in Mesovoid Shallow Substratum stations, representing the very first time that Solifugae have been captured in this type of trap.

6.
Front Plant Sci ; 14: 1048762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035041

RESUMO

Plant-associated microorganisms are increasingly recognized to play key roles in host health. Among several strategies, associated microorganisms can promote the production of specific metabolites by their hosts. However, there is still a huge gap in the understanding of such mechanisms in plant-microorganism interaction. Here, we want to determine whether different levels of olive leaf spot (OLS) disease incidence were related to differences in the composition of fungal and secondary metabolites (i.e. phenolic and volatile compounds) in leaves from olive tree cultivars with contrasting OLS susceptibilities (ranging from tolerant to highly susceptible). Accordingly, leaves with three levels of OLS incidence from both cultivars were used to assess epiphytic and endophytic fungal communities, by barcoding of cultivable isolates, as well as to evaluate leaf phenolic and volatile composition. Fungal and metabolite compositions variations were detected according to the level of disease incidence. Changes were particularly noticed for OLS-tolerant cultivars, opposing to OLS-susceptible cultivars, suggesting that disease development is linked, not only to leaf fungal and metabolite composition, but also to host genotype. A set of metabolites/fungi that can act as predictive biomarkers of plant tolerance/susceptibility to OLS disease were identified. The metabolites α-farnesene and p-cymene, and the fungi Fusarium sp. and Alternaria sp. were more related to disease incidence, while Pyronema domesticum was related to the absence of disease symptoms. Cultivar susceptibility to OLS disease is then suggested to be driven by fungi, volatile and phenolic host leaves composition, and above all to plant-fungus interaction. A deeper understanding of these complex interactions may unravel plant defensive responses.

7.
Microb Ecol ; 61(1): 154-65, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20614116

RESUMO

The social amoebae (dictyostelids) are the only truly multicellular lineage within the superkingdom Amoebozoa, the sister group to Ophistokonts (Metazoa+Fungi). Despite the exceptional phylogenetic and evolutionary value of this taxon, the environmental factors that determine their distribution and diversity are largely unknown. We have applied statistical modeling to a set of data obtained from an extensive and detailed survey in the south-western of Europe (The Iberian Peninsula including Spain and Portugal) in order to estimate some of the main environmental factors influencing the distribution and diversity of dictyostelid in temperate climates. It is the first time that this methodology is applied to the study of this unique group of soil microorganisms. Our results show that a combination of climatic (temperature, water availability), physical (pH) and vegetation (species richness) factors favor dictyostelid species richness. In the Iberian Peninsula, dictyostelid diversity is highest in colder and wet environments, indicating that this group has likely diversified in relatively cold places with high levels of water availability.


Assuntos
Biodiversidade , Dictyosteliida/fisiologia , Solo/parasitologia , Dictyosteliida/classificação , Dictyosteliida/genética , Dictyosteliida/isolamento & purificação , Ecossistema , Modelos Biológicos , Portugal , Espanha
8.
Curr Opin Insect Sci ; 47: 125-135, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252593

RESUMO

If we are to sustainably provide food to a rapidly growing human population, biological pest control (BPC) should integrate food web theory and evolution. This will account for the impacts of climate warming on the complex community settings of agroecosystems. We review recent studies looking for top-down augmentative pest control being hampered/promoted by biotic (community contexts) and/or abiotic (climate) drivers. Most studies found either positive or neutral effects on BPC. However, most ignored potential evolutionary responses occurring in the environments under study. We propose engineering food webs by engaging in a continuous feedback between ecological and evolutionary data, and individual-based modelling of agroecosystems. This should speed up the procurement of strains of efficient natural enemies better adapted to warming.


Assuntos
Cadeia Alimentar , Controle Biológico de Vetores , Animais , Clima , Mudança Climática
9.
BMC Evol Biol ; 10: 236, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20682029

RESUMO

BACKGROUND: Explanations for the evolution of female-biased, extreme Sexual Size Dimorphism (SSD), which has puzzled researchers since Darwin, are still controversial. Here we propose an extension of the Gravity Hypothesis (i.e., the GH, which postulates a climbing advantage for small males) that in conjunction with the fecundity hypothesis appears to have the most general power to explain the evolution of SSD in spiders so far. In this "Bridging GH" we propose that bridging locomotion (i.e., walking upside-down under own-made silk bridges) may be behind the evolution of extreme SSD. A biomechanical model shows that there is a physical constraint for large spiders to bridge. This should lead to a trade-off between other traits and dispersal in which bridging would favor smaller sizes and other selective forces (e.g. fecundity selection in females) would favor larger sizes. If bridging allows faster dispersal, small males would have a selective advantage by enjoying more mating opportunities. We predicted that both large males and females would show a lower propensity to bridge, and that SSD would be negatively correlated with sexual dimorphism in bridging propensity. To test these hypotheses we experimentally induced bridging in males and females of 13 species of spiders belonging to the two clades in which bridging locomotion has evolved independently and in which most of the cases of extreme SSD in spiders are found. RESULTS: We found that 1) as the degree of SSD increased and females became larger, females tended to bridge less relative to males, and that 2) smaller males and females show a higher propensity to bridge. CONCLUSIONS: Physical constraints make bridging inefficient for large spiders. Thus, in species where bridging is a very common mode of locomotion, small males, by being more efficient at bridging, will be competitively superior and enjoy more mating opportunities. This "Bridging GH" helps to solve the controversial question of what keeps males small and also contributes to explain the wide range of SSD in spiders, as those spider species in which extreme SSD has not evolved but still live in tall vegetation, do not use bridging locomotion to disperse.


Assuntos
Evolução Biológica , Tamanho Corporal , Gravitação , Caracteres Sexuais , Aranhas/genética , Animais , Hibridização Genômica Comparativa , Feminino , Locomoção/genética , Masculino , Modelos Biológicos , Análise Multivariada , Aranhas/crescimento & desenvolvimento
10.
J Theor Biol ; 266(3): 430-5, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20600136

RESUMO

Silk is known for its strength and extensibility and has played a key role in the radiation of spiders. Individual spiders use different glands to produce silk types with unique sets of proteins. Most research has studied the properties of major ampullate and capture spiral silks and their ecological implications, while little is known about minor ampullate silk, the type used by those spider species studied to date for bridging displacements. A biomechanical model parameterised with available data shows that the minimum radius of silk filaments required for efficient bridging grows with the square root of the spider's body mass, faster than the radius of minor ampullate silk filaments actually produced by spiders. Because the morphology of spiders adapted to walking along or under silk threads is ill suited for moving on a solid surface, for these species there is a negative relationship between body mass and displacement ability. As it stands, the model suggests that spiders that use silk for their displacements are prevented from attaining a large body size if they must track their resources in space. In particular, silk elasticity would favour sexual size dimorphism because males that must use bridging lines to search for females cannot grow large.


Assuntos
Tamanho Corporal/fisiologia , Proteínas de Insetos/fisiologia , Seda/fisiologia , Aranhas/fisiologia , Algoritmos , Animais , Elasticidade , Feminino , Proteínas de Insetos/química , Masculino , Modelos Biológicos , Seda/química , Especificidade da Espécie , Aranhas/classificação
11.
Biology (Basel) ; 9(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825577

RESUMO

Behaviors may enhance fitness in some situations while being detrimental in others. Linked behaviors (behavioral syndromes) may be central to understanding the maintenance of behavioral variability in natural populations. The spillover hypothesis of premating sexual cannibalism by females explains genetically determined female aggression towards both prey and males: growth to a larger size translates into higher fecundity, but at the risk of insufficient sperm acquisition. Here, we use an individual-based model to determine the ecological scenarios under which this spillover strategy is more likely to evolve over a strategy in which females attack approaching males only once the female has previously secured sperm. We found that a classic spillover strategy could never prevail. However, a more realistic early-spillover strategy, in which females become adults earlier in addition to reaching a larger size, could be maintained in some ecological scenarios and even invade a population of females following the other strategy. We also found under some ecological scenarios that both behavioral types coexist through frequency-dependent selection. Additionally, using data from the spider Lycosa hispanica, we provide strong support for the prediction that the two strategies may coexist in the wild. Our results clarify how animal personalities evolve and are maintained in nature.

12.
Insects ; 10(5)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126093

RESUMO

Soil fauna play a key role in nutrient cycling and decomposition, and in recent years, researchers have become more and more interested in this compartment of terrestrial ecosystems. In addition, soil fauna can act as ecosystem engineers by creating, modifying, and maintaining the habitat for other organisms. Ecologists usually utilize live catches in pitfalls traps as a standard method to study the activity of epigeic fauna in addition to relative abundance. Counts in pitfall traps can be used as estimates of relative activity to compare among experimental treatments. This requires taking independent estimates of abundance (e.g., by sifting soil litter, mark-recapture), which can then be used as covariates in linear models to compare the levels of fauna activity (trap catches) among treatments. However, many studies show that the use of pitfall traps is not the most adequate method to estimate soil fauna relative abundances, and these concerns may be extensible to estimating activity. Here, we present two new types of traps devised to study activity in litter fauna, and which we call "cul-de-sac" and "basket traps", respectively. We experimentally show that, at least for litter dwellers, these new traps are more appropriate to estimate fauna activity than pitfall traps because: (1) pitfall traps contain 3.5× more moisture than the surrounding environment, potentially attracting animals towards them when environmental conditions are relatively dry; (2) cul-de-sac and basket traps catch ca. 4× more of both meso- and macrofauna than pitfall traps, suggesting that pitfall traps are underestimating activity; and (3) pitfall traps show a bias towards collecting 1.5× higher amounts of predators, which suggests that predation rates are higher within pitfall traps. We end with a protocol and recommendations for how to use these new traps in ecological experiments and surveys aiming at estimating soil arthropod activity.

13.
Evolution ; 62(10): 2534-44, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18647341

RESUMO

Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the "relative" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection ("Large,""Control," and "Small" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines.


Assuntos
Besouros/anatomia & histologia , Seleção Genética , Temperatura , Animais , Tamanho Corporal , Besouros/genética , Besouros/fisiologia , Comportamento Alimentar , Feminino , Fertilidade , Sementes
14.
J Anim Ecol ; 77(6): 1099-108, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18573143

RESUMO

1. Body condition (defined as the relative amount of energy reserves in the body) is an animal trait with strong ecological implications. In some animal taxa (e.g. arthropods), the external volume of the body part in which most nutrients are stored (e.g. abdomen) is used interchangeably with body mass to estimate body condition, making the implicit assumption that abdomen residual volume is a good surrogate of residual mass. However, the degree of correlation between these two measures should largely depend on the density of the nutrients stored. 2. We simulated two food-supplemented experimental groups of animals, each storing a slightly different amount of lipids either in their abdomens or in their entire bodies, and explored (i) how different estimates of condition were able to detect fixed differences between the groups; and (ii) how the amount of lipids stored could affect the outcome of non-intrusive measures of condition on a dichotomous variable (e.g. survival, mating success). We found that density body condition (body mass statistically controlled for structural body size and body volume) has much greater power to detect differences between experimental groups or effects on binary response variables than do classic mass/size or volume/size condition indices. 3. Using data on Lycosa tarantula (L.), a burrowing wolf spider, we report dramatic differences among these three indices in their ability to detect sex differences in the effect of feeding treatment on body condition at maturity. In particular, a plot of residual mass against residual volume reflecting nutrient density suggests that poorly fed spiders are nutritionally unbalanced, since well-fed spiders invest in nutrients of very different density. 4. Furthermore, using data on Scathophaga stercoraria (L.), the yellow dung fly, we found that an index of density condition was better at distinguishing condition differences among three populations than were mass or volume condition estimates alone. 5. We propose that including these three surrogates of condition (mass, volume and density) will substantially improve the accuracy of non-intrusive estimates of body condition, thus providing more powerful tools with direct application in a wide range of disciplines.


Assuntos
Composição Corporal/fisiologia , Peso Corporal/fisiologia , Dípteros/fisiologia , Aranhas/fisiologia , Animais , Besouros/fisiologia , Simulação por Computador , Feminino , Masculino , Modelos Biológicos , Caracteres Sexuais
15.
Biodivers Data J ; (6): e29443, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532624

RESUMO

BACKGROUND: A large scale semi-quantitative biodiversity assessment was conducted in white oak woodlands in areas included in the Spanish Network of National Parks, as part of a project aimed at revealing biogeographic patterns and identify biodiversity drivers. The semi-quantitative COBRA sampling protocol was conducted in sixteen 1-ha plots across six national parks using a nested design. All adult specimens were identified to species level based on morphology. Uncertain delimitations and identifications due to either limited information of diagnostic characters or conflicting taxonomy were further investigated using DNA barcode information. NEW INFORMATION: We identified 376 species belonging to 190 genera in 39 families, from the 8,521 adults found amongst the 20,539 collected specimens. Faunistic results include the discovery of 7 new species to the Iberian Peninsula, 3 new species to Spain and 11 putative new species to science. As largely expected by environmental features, the southern parks showed a higher proportion of Iberian and Mediterranean species than the northern parks, where the Palearctic elements were largely dominant. The analysis of approximately 3,200 DNA barcodes generated in the present study, corroborated and provided finer resolution to the morphologically based delimitation and identification of specimens in some taxonomically challenging families. Specifically, molecular data confirmed putative new species with diagnosable morphology, identified overlooked lineages that may constitute new species, confirmed assignment of specimens of unknown sexes to species and identified cases of misidentifications and phenotypic polymorphisms.

16.
Ecology ; 88(6): 1454-65, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17601138

RESUMO

Interactions among predators that prey on each other and are potential competitors for shared prey (intraguild [IG] predators) are widespread in terrestrial ecosystems and have the potential to strongly influence the dynamics of terrestrial food webs. Ants and spiders are abundant and ubiquitous terrestrial IG predators, yet the strength and consequences of interactions between them are largely unknown. In the leaf-litter food web of a deciduous forest in Kentucky (USA), we tested the direct and indirect effects of ants on spiders and a category of shared prey (Collembola) by experimentally subsidizing ants in open plots in two field experiments. In the first experiment, ant activity was increased, and the density of ants in the litter was doubled, by placing carbohydrate and protein baits in the center of each plot. Gnaphosa spiders were almost twice as abundant and Schizocosa spiders were half as abundant in baited plots relative to controls. There were more tomocerid Collembola in baited plots, suggesting possible indirect effects on Collembola caused by ant-spider interactions. The second experiment, in which screening of two mesh sizes selectively excluded large and small worker ants from a sugar bait, revealed that the large ants, primarily Camponotus, could alone induce similar effects on spiders. Gnaphosa biomass density was almost twice as high in the plots where large ants were more active, whereas Schizocosa biomass density was reduced by half in these plots. Although tomocerid densities did not differ between treatments, tomocerid numbers were negatively correlated with the activity of Formica, another large ant species. Path analysis failed to support the hypothesis that the ant Camponotus indirectly affected tomocerid Collembola through effects on densities of spiders. However, path analysis also revealed other indirect effects of Camponotus affecting tomocerids. These results illustrate the complexity of interactions between and within two major IG predator groups with disparate predatory behaviors, complexities that will have consequences for functioning of the forest-floor food web.


Assuntos
Formigas/fisiologia , Ecossistema , Cadeia Alimentar , Comportamento Predatório , Aranhas/fisiologia , Animais , Formigas/crescimento & desenvolvimento , Kentucky , Densidade Demográfica , Dinâmica Populacional , Crescimento Demográfico , Especificidade da Espécie , Aranhas/crescimento & desenvolvimento
17.
PeerJ ; 4: e2562, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27781162

RESUMO

Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, 'keystone structures', which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals-springtails, mites and enchytraeids-during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered 'keystone structures' that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna activities through their decaying fruit husks, hence acting as ecosystem engineers.

18.
Trends Ecol Evol ; 31(2): 158-170, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26753782

RESUMO

Competitive interactions shape the evolution of organisms. However, often it is not clear whether competition is the driving force behind the patterns observed. The recent use of experimental evolution in competitive environments can help establish such causality. Unfortunately, this literature is scattered, as competition for food, mates, and hosts are subject areas that belong to different research fields. Here, we group these bodies of literature, extract common processes and patterns concerning the role of competition in shaping evolutionary trajectories, and suggest perspectives stemming from an integrative view of competition across these research fields. This review reinstates the power of experimental evolution in addressing the evolutionary consequences of competition, but highlights potential pitfalls in the design of such experiments.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Comportamento Competitivo/fisiologia , Alimentos , Preferência de Acasalamento Animal/fisiologia , Animais
19.
PLoS One ; 10(12): e0145111, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26679703

RESUMO

Captive breeding of endangered species often aims at preserving genetic diversity and to avoid the harmful effects of inbreeding. However, deleterious alleles causing inbreeding depression can be purged when inbreeding persists over several generations. Despite its great importance both for evolutionary biology and for captive breeding programmes, few studies have addressed whether and to which extent purging may occur. Here we undertake a longitudinal study with the largest captive population of Cuvier's gazelle managed under a European Endangered Species Programme since 1975. Previous results in this population have shown that highly inbred mothers tend to produce more daughters, and this fact was used in 2006 to reach a more appropriate sex-ratio in this polygynous species by changing the pairing strategy (i.e., pairing some inbred females instead of keeping them as surplus individuals in the population). Here, by using studbook data we explore whether purging has occurred in the population by investigating whether after the change in pairing strategy a) inbreeding and homozygosity increased at the population level, b) fitness (survival) increased, and c) the relationship between inbreeding and juvenile survival, was positive. Consistent with the existence of purging, we found an increase in inbreeding coefficients, homozygosity and juvenile survival. In addition, we showed that in the course of the breeding programme the relationship between inbreeding and juvenile survival was not uniform but rather changed over time: it was negative in the early years, flat in the middle years and positive after the change in pairing strategy. We highlight that by allowing inbred individuals to mate in captive stocks we may favour sex-ratio bias towards females, a desirable managing strategy to reduce the surplus of males that force most zoos to use ethical culling and euthanizing management tools. We discuss these possibilities but also acknowledge that many other effects should be considered before implementing inbreeding and purging as elements in management decisions.


Assuntos
Antílopes/genética , Espécies em Perigo de Extinção , Aptidão Genética , Endogamia , Animais , Feminino , Homozigoto , Masculino
20.
Evolution ; 56(2): 420-5, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11926508

RESUMO

The race for reaching mates by the time they are receptive, or sexual selection by scramble competition, has received little attention. We argue that smaller males are favored in species in which the male must climb to reach females located in high habitat patches. This new explanation we term the "gravity hypothesis" of sexual size dimorphism (SSD). We show that a simple biomechanical model of animal movement predicts that: (1) selection should favor a comparatively smaller size in the searching sex when searching involves climbing; and (2) this effect should be stronger in larger species than in smaller species. In reaching high habitats, smaller, faster searchers will be favored either through sexual selection by scramble competition and/or by escaping predation easier by running faster on vertical surfaces. Different spider species are found at a wide range of heights. We compiled a dataset of spider taxa and arranged their habitats according to four height categories, ranked from soil surface to trees. We show that, after controlling for phylogeny, both predictions of the gravity hypothesis of SSD are met. Thus, it appears that the constraint imposed by gravity on climbing males is a selective factor in determining male dwarfism.


Assuntos
Constituição Corporal , Comportamento Sexual Animal , Animais , Connecticut , Ecossistema , Meio Ambiente , Feminino , Masculino , Análise de Regressão , Seleção Genética , Sensibilidade e Especificidade , Caracteres Sexuais , Singapura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA