Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969341

RESUMO

HSP90Cs are essential molecular chaperones localized in the plastid stroma that maintain protein homeostasis and assist the import and thylakoid transport of chloroplast proteins. While HSP90C contains all conserved domains as an HSP90 family protein, it also possesses a unique feature in its variable C-terminal extension (CTE) region. This study elucidated the specific function of this HSP90C CTE region. Our phylogenetic analyses revealed that this intrinsically disordered region contains a highly conserved DPW motif in the green lineages. With biochemical assays, we showed that the CTE is required for the chaperone to effectively interact with client proteins PsbO1 and LHCB2 to regulate ATP-independent chaperone activity and to effectuate its ATP hydrolysis. The CTE truncation mutants could support plant growth and development reminiscing the wild type under normal conditions except for a minor phenotype in cotyledon when expressed at a level comparable to wild type. However, higher HSP90C expression was observed to correlate with a stronger response to specific photosystem II inhibitor DCMU, and CTE truncations dampened the response. Additionally, when treated with lincomycin to inhibit chloroplast protein translation, CTE truncation mutants showed a delayed response to PsbO1 expression repression, suggesting its role in chloroplast retrograde signaling. Our study therefore provides insights into the mechanism of HSP90C in client protein binding and the regulation of green chloroplast maturation and function, especially under stress conditions.

2.
Plant J ; 119(1): 218-236, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565312

RESUMO

The Arabidopsis endoplasmic reticulum-localized heat shock protein HSP90.7 modulates tissue differentiation and stress responses; however, complete knockout lines have not been previously reported. In this study, we identified and analyzed a mutant allele, hsp90.7-1, which was unable to accumulate the HSP90.7 full-length protein and showed seedling lethality. Microscopic analyses revealed its essential role in male and female fertility, trichomes and root hair development, proper chloroplast function, and apical meristem maintenance and differentiation. Comparative transcriptome and proteome analyses also revealed the role of the protein in a multitude of cellular processes. Particularly, the auxin-responsive pathway was specifically downregulated in the hsp90.7-1 mutant seedlings. We measured a much-reduced auxin content in both root and shoot tissues. Through comprehensive histological and molecular analyses, we confirmed PIN1 and PIN5 accumulations were dependent on the HSP90 function, and the TAA-YUCCA primary auxin biosynthesis pathway was also downregulated in the mutant seedlings. This study therefore not only fulfilled a gap in understanding the essential role of HSP90 paralogs in eukaryotes but also provided a mechanistic insight on the ER-localized chaperone in regulating plant growth and development via modulating cellular auxin homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Retículo Endoplasmático , Proteínas de Choque Térmico HSP90 , Homeostase , Ácidos Indolacéticos , Plântula , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
3.
J Exp Bot ; 71(22): 7073-7087, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32853383

RESUMO

Chloroplast stromal factors involved in regulating thylakoid protein targeting are poorly understood. We previously reported that in Arabidopsis thaliana, the stromal-localized chaperone HSP90C (plastid heat shock protein 90) interacted with the nuclear-encoded thylakoid lumen protein PsbO1 (PSII subunit O isoform 1) and suggested a role for HSP90C in aiding PsbO1 thylakoid targeting. Using in organello transport assays, particularly with model substrates naturally expressed in stroma, we showed that light, exogenous ATP, and HSP90C activity were required for Sec-dependent transport of green fluorescent protein (GFP) led by the PsbO1 thylakoid targeting sequence. Using a previously identified PsbO1T200A mutant, we provided evidence that a stronger interaction between HSP90C and PsbO1 better facilitated its stroma-thylakoid trafficking. We also demonstrated that SecY1, the channel protein of the thylakoid SEC translocase, specifically interacted with HSP90C in vivo. Inhibition of the chaperone ATPase activity suppressed the association of the PsbO1GFP-HSP90C complex with SecY1. Together with analyzing the expression and accumulation of a few other thylakoid proteins that utilize the SRP, TAT, or SEC translocation pathways, we propose a model in which HSP90C forms a guiding complex that interacts with thylakoid protein precursors and assists in their specific targeting to the thylakoid SEC translocon.


Assuntos
Plastídeos , Tilacoides , Cloroplastos/metabolismo , Precursores de Proteínas/metabolismo , Transporte Proteico , Canais de Translocação SEC/metabolismo , Tilacoides/metabolismo
4.
Plant Cell Physiol ; 59(10): 1942-1955, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29917151

RESUMO

Tissue-specific promoters play an important role in plant molecular farming. Here, we describe a strategy to modify the tissue specificity of a maize embryo-specific bidirectional promoter PZmBD1. Six types of cis-elements, i.e. RY repeats (R), GCN4 (G), the prolamin box (P), Skn-1 (S), and the ACGT and AACA (A) motifs, were collected and fused to PZmBD1 to generate eight chimeric putative bidirectional promoters. Qualitative and quantitative analysis of reporter genes driven by the promoters showed that two promoters exhibited high seed-specific bidirectional activity in maize transient and stable transformed systems. The stronger one was chosen and fused to the intergenic region of two gene clusters consisting of four anthocyanin biosynthesis-related genes (ZmBz1, ZmBz2, ZmC1 and ZmR2) and seven reporter genes, resulting in the first embryo and endosperm anthocyanin-rich purple maize. Anthocyanin analysis showed that the total anthocyanin content reaches 2,910 mg kg-1 DW in transgenic maize and cyanidin is the major anthocyanin in transgenic maize, as in natural varieties. The expression profile analysis of endogenous genes showed that the anthocyanin biosynthesis pathway was activated by two transgenic transcription factor genes ZmC1 and ZmR2. Our results indicate that both the modification strategy and these functionally characterized tissue-specific bidirectional promoters generated could be used for genetic research and development of plant biotechnology products. The anthocyanin-rich purple maize could provide economic natural colorants for the food and beverage industry, and valuable germplasm for developing anthocyanin-rich fresh corn.


Assuntos
Antocianinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/fisiologia , Sementes/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Engenharia Metabólica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Sementes/genética , Zea mays/genética
5.
Plants (Basel) ; 13(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732479

RESUMO

The plastid stroma-localized chaperone HSP90C plays a crucial role in maintaining optimal proteostasis within chloroplasts and participates in protein translocation processes. While existing studies have revealed HSP90C's direct interaction with the Sec translocase-dependent client pre-protein PsbO1 and the SecY1 subunit of the thylakoid membrane-bound Sec1 translocase channel system, its direct involvement with the extrinsic homodimeric Sec translocase subunit, SecA1, remains elusive. Employing bimolecular fluorescence complementation (BiFC) assay and other in vitro analyses, we unraveled potential interactions between HSP90C and SecA1. Our investigation revealed dynamic interactions between HSP90C and SecA1 at the thylakoid membrane and stroma. The thylakoid membrane localization of this interaction was contingent upon active HSP90C ATPase activity, whereas their stromal interaction was associated with active SecA1 ATPase activity. Furthermore, we observed a direct interaction between these two proteins by analyzing their ATP hydrolysis activities, and their interaction likely impacts their respective functional cycles. Additionally, using PsbO1, a model Sec translocase client pre-protein, we studied the intricacies of HSP90C's possible involvement in pre-protein translocation via the Sec1 system in chloroplasts. The results suggest a complex nature of the HSP90C-SecA1 interaction, possibly mediated by the Sec client protein. Our studies shed light on the nuanced aspects of HSP90C's engagement in orchestrating pre-protein translocation, and we propose a potential collaborative role of HSP90C with SecA1 in actively facilitating pre-protein transport across the thylakoid membrane.

7.
Oxid Med Cell Longev ; 2018: 9017828, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29643978

RESUMO

The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS) of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics.


Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Ipomoea batatas/química , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Medições Luminescentes , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA