Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 122(44): 8794-8801, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30335386

RESUMO

A new method for generating high-resolution coherent 3D (HRC3D) spectra has been developed that is based on the nonparametric four-wave mixing process MENS (multiply enhanced nonparametric spectroscopy). The resulting spectra have rotational patterns that are different from those produced previously using the parametric four-wave mixing process CARS. A change in the rotational pattern facilitates a new approach to scanning where orthogonal 2D slices in 3D space are combined to make a 3D rotational pattern. This 3D rotational pattern may then be used to calculate rotational constants for levels in the excited electronic state and upper regions of the ground electronic state. Unlike previous forms of HRC3D spectroscopy, this new approach provides a stand-alone rapid and simple tool for the rotational analysis of electronic spectra without the need for obtaining peak positions or molecular constants from other (1D or 2D) forms of spectroscopy.

2.
EBioMedicine ; 99: 104908, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101298

RESUMO

BACKGROUND: Deep learning has revolutionized digital pathology, allowing automatic analysis of hematoxylin and eosin (H&E) stained whole slide images (WSIs) for diverse tasks. WSIs are broken into smaller images called tiles, and a neural network encodes each tile. Many recent works use supervised attention-based models to aggregate tile-level features into a slide-level representation, which is then used for downstream analysis. Training supervised attention-based models is computationally intensive, architecture optimization of the attention module is non-trivial, and labeled data are not always available. Therefore, we developed an unsupervised and fast approach called SAMPLER to generate slide-level representations. METHODS: Slide-level representations of SAMPLER are generated by encoding the cumulative distribution functions of multiscale tile-level features. To assess effectiveness of SAMPLER, slide-level representations of breast carcinoma (BRCA), non-small cell lung carcinoma (NSCLC), and renal cell carcinoma (RCC) WSIs of The Cancer Genome Atlas (TCGA) were used to train separate classifiers distinguishing tumor subtypes in FFPE and frozen WSIs. In addition, BRCA and NSCLC classifiers were externally validated on frozen WSIs. Moreover, SAMPLER's attention maps identify regions of interest, which were evaluated by a pathologist. To determine time efficiency of SAMPLER, we compared runtime of SAMPLER with two attention-based models. SAMPLER concepts were used to improve the design of a context-aware multi-head attention model (context-MHA). FINDINGS: SAMPLER-based classifiers were comparable to state-of-the-art attention deep learning models to distinguish subtypes of BRCA (AUC = 0.911 ± 0.029), NSCLC (AUC = 0.940 ± 0.018), and RCC (AUC = 0.987 ± 0.006) on FFPE WSIs (internal test sets). However, training SAMLER-based classifiers was >100 times faster. SAMPLER models successfully distinguished tumor subtypes on both internal and external test sets of frozen WSIs. Histopathological review confirmed that SAMPLER-identified high attention tiles contained subtype-specific morphological features. The improved context-MHA distinguished subtypes of BRCA and RCC (BRCA-AUC = 0.921 ± 0.027, RCC-AUC = 0.988 ± 0.010) with increased accuracy on internal test FFPE WSIs. INTERPRETATION: Our unsupervised statistical approach is fast and effective for analyzing WSIs, with greatly improved scalability over attention-based deep learning methods. The high accuracy of SAMPLER-based classifiers and interpretable attention maps suggest that SAMPLER successfully encodes the distinct morphologies within WSIs and will be applicable to general histology image analysis problems. FUNDING: This study was supported by the National Cancer Institute (Grant No. R01CA230031 and P30CA034196).


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Pulmonares , Humanos , Feminino
3.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577691

RESUMO

Deep learning has revolutionized digital pathology, allowing for automatic analysis of hematoxylin and eosin (H&E) stained whole slide images (WSIs) for diverse tasks. In such analyses, WSIs are typically broken into smaller images called tiles, and a neural network backbone encodes each tile in a feature space. Many recent works have applied attention based deep learning models to aggregate tile-level features into a slide-level representation, which is then used for slide-level prediction tasks. However, training attention models is computationally intensive, necessitating hyperparameter optimization and specialized training procedures. Here, we propose SAMPLER, a fully statistical approach to generate efficient and informative WSI representations by encoding the empirical cumulative distribution functions (CDFs) of multiscale tile features. We demonstrate that SAMPLER-based classifiers are as accurate or better than state-of-the-art fully deep learning attention models for classification tasks including distinction of: subtypes of breast carcinoma (BRCA: AUC=0.911 ± 0.029); subtypes of non-small cell lung carcinoma (NSCLC: AUC=0.940±0.018); and subtypes of renal cell carcinoma (RCC: AUC=0.987±0.006). A major advantage of the SAMPLER representation is that predictive models are >100X faster compared to attention models. Histopathological review confirms that SAMPLER-identified high attention tiles contain tumor morphological features specific to the tumor type, while low attention tiles contain fibrous stroma, blood, or tissue folding artifacts. We further apply SAMPLER concepts to improve the design of attention-based neural networks, yielding a context aware multi-head attention model with increased accuracy for subtype classification within BRCA and RCC (BRCA: AUC=0.921±0.027, and RCC: AUC=0.988±0.010). Finally, we provide theoretical results identifying sufficient conditions for which SAMPLER is optimal. SAMPLER is a fast and effective approach for analyzing WSIs, with greatly improved scalability over attention methods to benefit digital pathology analysis.

4.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945601

RESUMO

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 µm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with ≤3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.

5.
Nat Commun ; 14(1): 8406, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114489

RESUMO

Three-dimensional (3D) organoid cultures are flexible systems to interrogate cellular growth, morphology, multicellular spatial architecture, and cellular interactions in response to treatment. However, computational methods for analysis of 3D organoids with sufficiently high-throughput and cellular resolution are needed. Here we report Cellos, an accurate, high-throughput pipeline for 3D organoid segmentation using classical algorithms and nuclear segmentation using a trained Stardist-3D convolutional neural network. To evaluate Cellos, we analyze ~100,000 organoids with ~2.35 million cells from multiple treatment experiments. Cellos segments dye-stained or fluorescently-labeled nuclei and accurately distinguishes distinct labeled cell populations within organoids. Cellos can recapitulate traditional luminescence-based drug response of cells with complex drug sensitivities, while also quantifying changes in organoid and nuclear morphologies caused by treatment as well as cell-cell spatial relationships that reflect ecological affinity. Cellos provides powerful tools to perform high-throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.


Assuntos
Neoplasias , Humanos , Organoides , Proliferação de Células , Redes Neurais de Computação
6.
FEMS Microbiol Lett ; 363(13)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27190159

RESUMO

Escherichia coli DedA/Tvp38 family proteins YghB and YqjA are putative membrane transporters with 62% amino acid identity and overlapping functions. An E. coli strain (BC202) with nonpolar ΔyghB and ΔyqjA mutations displays cell-division defects and temperature sensitivity and is sensitive to antibiotics and alkaline pH. In this study, we performed site-directed mutagenesis on conserved, charged amino acids of YqjA and YghB. We discovered two conserved predicted membrane-embedded arginines (R130 and R136) that are critical for function in both proteins as defined by their ability to complement BC202 phenotypes, when expressed from a plasmid. Lysine can substitute for arginine at position R130 indicating a charge dependence at this position, but could not substitute at R136. In light of the established role that arginine plays in the translocation mechanism of numerous membrane transporters, we hypothesize that these amino acids play a role in the transport mechanism of these DedA/Tvp38 family proteins.


Assuntos
Arginina/química , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Sequência de Aminoácidos , Antibacterianos/farmacologia , Arginina/genética , Arginina/isolamento & purificação , Arginina/metabolismo , Farmacorresistência Bacteriana , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Lisina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA