Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurooncol ; 139(1): 23-31, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29931616

RESUMO

INTRODUCTION: Although role of individual microRNAs (miRNAs) in the pathogenesis of gliomas has been well studied, their role as a clustered remains unexplored in gliomas. METHODS: In this study, we performed the expression analysis of miR-379/miR-656 miRNA-cluster (C14MC) in oligodendrogliomas (ODGs) and also investigated the mechanism underlying modulation of this cluster. RESULTS: We identified significant downregulation of majority of the miRNAs from this cluster in ODGs. Further data from The Cancer Genome Atlas (TCGA) also confirmed the global downregulation of C14MC. Furthermore, we observed that its regulation is maintained by transcription factor MEF2. In addition, epigenetic machinery involving DNA and histone-methylation are also involved in its regulation, which is acting independently or in synergy. The post- transcriptionally regulatory network of this cluster showed enrichment of key cancer-related biological processes such as cell adhesion and migration. Also, there was enrichment of several cancer related pathways viz PIK3 signaling pathway and glioma pathways. Survival analysis demonstrated association of C14MC (miR-487b and miR-409-3p) with poor progression free survival in ODGs. CONCLUSION: Our work demonstrates tumor-suppressive role of C14MC and its role in pathogenesis of ODGs and therefore could be relevant for the development of new therapeutic strategies.


Assuntos
Neoplasias Encefálicas/metabolismo , MicroRNAs/metabolismo , Oligodendroglioma/metabolismo , Adulto , Idoso , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Biologia Computacional , Metilação de DNA , Regulação para Baixo , Epigênese Genética/fisiologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Oligodendroglioma/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/fisiologia
2.
Nucleic Acids Res ; 43(16): 8057-65, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26209130

RESUMO

RNA editing of miRNAs, especially in the seed region, adds another layer to miRNA mediated gene regulation which can modify its targets, altering cellular signaling involved in important processes such as differentiation. In this study, we have explored the role of miRNA editing in CD4(+) T cell differentiation. CD4(+) T cells are an integral component of the adaptive immune system. Naïve CD4(+) T cells, on encountering an antigen, get differentiated either into inflammatory subtypes like Th1, Th2 or Th17, or into immunosuppressive subtype Treg, depending on the cytokine milieu. We found C-to-U editing at fifth position of mature miR-100, specifically in Treg. The C-to-U editing of miR-100 is functionally associated with at least one biologically relevant target change, from MTOR to SMAD2. Treg cell polarization by TGFß1 was reduced by both edited and unedited miR-100 mimics, but percentage of Treg in PBMCs was only reduced by edited miR-100 mimics, suggesting a model in which de-repression of MTOR due to loss of unedited mir-100, promotes tolerogenic signaling, while gain of edited miR-100 represses SMAD2, thereby limiting the Treg. Such delicately counterbalanced systems are a hallmark of immune plasticity and we propose that miR-100 editing is a novel mechanism toward this end.


Assuntos
MicroRNAs/metabolismo , Edição de RNA , Linfócitos T Reguladores/imunologia , Regiões 3' não Traduzidas , Linfócitos T CD4-Positivos/classificação , Diferenciação Celular , Células Cultivadas , Humanos , Proteína Smad2/genética , Subpopulações de Linfócitos T , Linfócitos T Reguladores/citologia , Serina-Treonina Quinases TOR/genética
3.
Am J Hum Genet ; 89(1): 111-20, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21737057

RESUMO

Identification and study of genetic variation in recently admixed populations not only provides insight into historical population events but also is a powerful approach for mapping disease loci. We studied a population (OG-W-IP) that is of African-Indian origin and has resided in the western part of India for 500 years; members of this population are believed to be descendants of the Bantu-speaking population of Africa. We have carried out this study by using a set of 18,534 autosomal markers common between Indian, CEPH-HGDP, and HapMap populations. Principal-components analysis clearly revealed that the African-Indian population derives its ancestry from Bantu-speaking west-African as well as Indo-European-speaking north and northwest Indian population(s). STRUCTURE and ADMIXTURE analyses show that, overall, the OG-W-IPs derive 58.7% of their genomic ancestry from their African past and have very little inter-individual ancestry variation (8.4%). The extent of linkage disequilibrium also reveals that the admixture event has been recent. Functional annotation of genes encompassing the ancestry-informative markers that are closer in allele frequency to the Indian ancestral population revealed significant enrichment of biological processes, such as ion-channel activity, and cadherins. We briefly examine the implications of determining the genetic diversity of this population, which could provide opportunities for studies involving admixture mapping.


Assuntos
População Negra/genética , Variação Genética , Genética Populacional/estatística & dados numéricos , População Branca/genética , África Ocidental , Alelos , Bases de Dados Genéticas , Frequência do Gene , Marcadores Genéticos , Genótipo , Humanos , Índia , Desequilíbrio de Ligação
4.
PLoS One ; 19(3): e0290936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451970

RESUMO

Autism spectrum disorder (ASD) is a developmental disorder with a prevalence of around 1% children worldwide and characterized by patient behaviour (communication, social interaction, and personal development). Data on the efficacy of diagnostic tests using copy number variations (CNVs) in candidate genes in ASD is currently around 10% but it is overrepresented by patients of Caucasian background. We report here that the diagnostic success of de novo candidate CNVs in Vietnamese ASD patients is around 6%. We recruited one hundred trios (both parents and a child) where the child was clinically diagnosed with ASD while the parents were not affected. We performed genetic screening to exclude RETT syndrome and Fragile X syndrome and performed genome-wide DNA microarray (aCGH) on all probands and their parents to analyse for de novo CNVs. We detected 1708 non-redundant CNVs in 100 patients and 118 (7%) of them were de novo. Using the filter for known CNVs from the Simons Foundation Autism Research Initiative (SFARI) database, we identified six CNVs (one gain and five loss CNVs) in six patients (3 males and 3 females). Notably, 3 of our patients had a deletion involving the SHANK3 gene-which is the highest compared to previous reports. This is the first report of candidate CNVs in ASD patients from Vietnam and provides the framework for building a CNV based test as the first tier screening for clinical management.


Assuntos
Transtorno do Espectro Autista , Masculino , Criança , Feminino , Humanos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA/genética , Vietnã/epidemiologia , Análise de Sequência com Séries de Oligonucleotídeos , Genômica , DNA
5.
Am J Hum Genet ; 86(2): 240-7, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20159111

RESUMO

Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous retinal disorder characterized by abnormal vascularisation of the peripheral retina, often accompanied by retinal detachment. To date, mutations in three genes (FZD4, LRP5, and NDP) have been shown to be causative for FEVR. In two large Dutch pedigrees segregating autosomal-dominant FEVR, genome-wide SNP analysis identified an FEVR locus of approximately 40 Mb on chromosome 7. Microsatellite marker analysis suggested similar at risk haplotypes in patients of both families. To identify the causative gene, we applied next-generation sequencing in the proband of one of the families, by analyzing all exons and intron-exon boundaries of 338 genes, in addition to microRNAs, noncoding RNAs, and other highly conserved genomic regions in the 40 Mb linkage interval. After detailed bioinformatic analysis of the sequence data, prioritization of all detected sequence variants led to three candidates to be considered as the causative genetic defect in this family. One of these variants was an alanine-to-proline substitution in the transmembrane 4 superfamily member 12 protein, encoded by TSPAN12. This protein has very recently been implicated in regulating the development of retinal vasculature, together with the proteins encoded by FZD4, LRP5, and NDP. Sequence analysis of TSPAN12 revealed two mutations segregating in five of 11 FEVR families, indicating that mutations in TSPAN12 are a relatively frequent cause of FEVR. Furthermore, we demonstrate the power of targeted next-generation sequencing technology to identify disease genes in linkage intervals.


Assuntos
Pareamento de Bases/genética , Ligação Genética , Proteínas de Membrana/genética , Mutação/genética , Doenças Retinianas/genética , Análise de Sequência de DNA/métodos , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Família , Feminino , Fundo de Olho , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas de Membrana/química , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Doenças Retinianas/patologia , Tetraspaninas
6.
Genes (Basel) ; 14(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36833422

RESUMO

Glaucoma is the largest cause of irreversible blindness with a multifactorial genetic etiology. This study explores novel genes and gene networks in familial forms of primary open angle glaucoma (POAG) and primary angle closure glaucoma (PACG) to identify rare mutations with high penetrance. Thirty-one samples from nine MYOC-negative families (five POAG and four PACG) underwent whole-exome sequencing and analysis. A set of prioritized genes and variations were screened in an independent validation cohort of 1536 samples and the whole-exome data from 20 sporadic patients. The expression profiles of the candidate genes were analyzed in 17 publicly available expression datasets from ocular tissues and single cells. Rare, deleterious SNVs in AQP5, SRFBP1, CDH6 and FOXM1 from POAG families and in ACACB, RGL3 and LAMA2 from PACG families were found exclusively in glaucoma cases. AQP5, SRFBP1 and CDH6 also revealed significant altered expression in glaucoma in expression datasets. Single-cell expression analysis revealed enrichment of identified candidate genes in retinal ganglion cells and corneal epithelial cells in POAG; whereas for PACG families, retinal ganglion cells and Schwalbe's Line showed enriched expression. Through an unbiased exome-wide search followed by validation, we identified novel candidate genes for familial cases of POAG and PACG. The SRFBP1 gene found in a POAG family is located within the GLC1M locus on Chr5q. Pathway analysis of candidate genes revealed enrichment of extracellular matrix organization in both POAG and PACG.


Assuntos
Glaucoma de Ângulo Fechado , Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Glaucoma de Ângulo Aberto/genética , Sequenciamento do Exoma , Mutação
7.
Hum Genet ; 131(1): 131-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21744140

RESUMO

Copy number variations (CNVs) have provided a dynamic aspect to the apparently static human genome. We have analyzed CNVs larger than 100 kb in 477 healthy individuals from 26 diverse Indian populations of different linguistic, ethnic and geographic backgrounds. These CNVRs were identified using the Affymetrix 50K Xba 240 Array. We observed 1,425 and 1,337 CNVRs in the deletion and amplification sets, respectively, after pooling data from all the populations. More than 50% of the genes encompassed entirely in CNVs had both deletions and amplifications. There was wide variability across populations not only with respect to CNV extent (ranging from 0.04-1.14% of genome under deletion and 0.11-0.86% under amplification) but also in terms of functional enrichments of processes like keratinization, serine proteases and their inhibitors, cadherins, homeobox, olfactory receptors etc. These did not correlate with linguistic, ethnic, geographic backgrounds and size of populations. Certain processes were near exclusive to deletion (serine proteases, keratinization, olfactory receptors, GPCRs) or duplication (homeobox, serine protease inhibitors, embryonic limb morphogenesis) datasets. Populations having same enriched processes were observed to contain genes from different genomic loci. Comparison of polymorphic CNVRs (5% or more) with those cataloged in Database of Genomic Variants revealed that 78% (2473) of the genes in CNVRs in Indian populations are novel. Validation of CNVs using Sequenom MassARRAY revealed extensive heterogeneity in CNV boundaries. Exploration of CNV profiles in such diverse populations would provide a widely valuable resource for understanding diversity in phenotypes and disease.


Assuntos
Cromossomos Humanos/genética , Variações do Número de Cópias de DNA , Etnicidade/genética , Genética Populacional , Genoma Humano , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase em Tempo Real
8.
Cell Biol Int ; 36(11): 1021-7, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22775755

RESUMO

Oxidative stress induced by serum starvation and H2O2 exposure, both triggers apoptosis in retinal neuronal cell line RGC-5 (retinal ganglion cell-5). We have examined whether, despite excess generation of ROS (reactive oxygen species) and apoptosis induction, there is any dissimilarity in nuclear morphology and apoptotic signalling pathway in RGC-5 under these conditions. Sub-confluent cells were treated either with H2O2 or maintained in SFM (serum-free medium). ROS level was detected along with nuclear morphology and ultrastructural analysis. Generation of excess intracellular ROS, nuclear localization of Bax and caspase 3 activation along with decrease of cellular viability, confirmed apoptosis induction in RGC-5 by 72 h serum starvation and 500 M H2O2 exposure for 1 h. Nuclear swelling as supported by nuclear cytoplasmic ratio and conspicuous black spots with nuclear remodelling were observed only upon SFM, but not with H2O2 treatment. Serum starvation did not alter JNK1 (c-Jun N-terminal kinase 1) expression, although nuclear translocation and higher level of pJNK (phospho-JNK) was evident. Conversely, H2O2 exposure blocked the expression and activation of JNK1 to phospho-JNK as a negligible level of pJNK was present in the cytoplasm. Despite similar ROS generation in both the conditions, difference in nuclear morphology and JNK1 expression leads to the hypothesis that RGC-5 cells may follow different signalling pathways when challenged with serum starvation and H2O2.


Assuntos
Apoptose , Núcleo Celular/ultraestrutura , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Estresse Oxidativo , Neurônios Retinianos/citologia , Transporte Ativo do Núcleo Celular , Animais , Caspase 3/metabolismo , Diferenciação Celular , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Forma do Núcleo Celular , Proliferação de Células , Sobrevivência Celular , Reprogramação Celular , Meios de Cultura Livres de Soro/metabolismo , Citoplasma/enzimologia , Citoplasma/metabolismo , Ativação Enzimática , Peróxido de Hidrogênio/efeitos adversos , Sistema de Sinalização das MAP Quinases , Microscopia Eletrônica de Varredura , Fosforilação , Ratos , Espécies Reativas de Oxigênio/metabolismo , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/enzimologia , Soro/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
Hum Mutat ; 32(6): E2226-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21618345

RESUMO

microRNAs are a recently discovered and well studied class of small noncoding functional RNAs. The regulatory role of microRNAs (miRNAs) has been well studied in a wide variety of biological processes but there have been no systematic effort to understand and analyze the genetic variations in miRNA loci and study its functional consequences. We have comprehensively curated genetic variations in miRNA loci in the human genome and established a computational pipeline to assess potential functional consequences of these variants along with methods for systematic curation and reporting of variations in these loci. The data is made available on the Leiden Open (source) Variation Database (LOVD) platform at http://genome.igib.res.in/mirlovd to provide ease of aggregation and analysis and is open for community curation efforts.


Assuntos
Bases de Dados de Ácidos Nucleicos , Variação Genética , Genoma Humano , MicroRNAs/genética , Genômica , Humanos , Internet
10.
Chem Biodivers ; 8(6): 1139-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21674786

RESUMO

The antimicrobial potential of two bioflavonoids, i.e., 5,7-dihydroxy-4',6,8-trimethoxyflavone (1) and 5,6-dihydroxy-4',7,8-trimethoxyflavone (2), isolated from Limnophila heterophylla Benth. and L. indica (Linn.) Druce (Scrophulariaceae), respectively, were evaluated against the microbial strains Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Alternaria solani, and Candida albicans. Compounds 1 and 2 exhibited moderate but broad antimicrobial activities against both Gram-positive and Gram-negative bacteria and also against the fungal pathogens. Moreover, the mechanism of action of 1 and 2 on the cellular functions or structures of some of the microorganisms was studied. Compound 1 showed a bactericidal effect against E. coli and S. aureus (MICs of 200 and 250 µg/ml, resp.), while compound 2 was found to effectively kill B. subtilis by cell lysis. The growth of A. solani and C. albicans was inhibited by compounds 1 and 2, respectively. The effects of the flavonoids on the cellular structures and the carbohydrate metabolic pathways were studied by scanning electron microscopy (SEM) of the treated cells and by assessing the specific activity of key enzymes of the pathways, respectively. At sublethal doses, they enhanced the activity of gluconeogenic fructose bisphosphatase, but decreased the activity of phosphofructokinase and isocitrate dehydrogenase, the key enzymes of the EmbdenMeyerhofParnas pathway and the tricarboxylic acid cycle, respectively.


Assuntos
Anti-Infecciosos/farmacologia , Flavonas/química , Scrophulariaceae/química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Flavonas/isolamento & purificação , Flavonas/farmacologia , Frutose-Bifosfatase/metabolismo , Isocitrato Desidrogenase/metabolismo , Testes de Sensibilidade Microbiana , Fosfofrutoquinases/metabolismo
11.
J Clin Med ; 10(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575183

RESUMO

INTRODUCTION: Breast cancer is the most frequently diagnosed cancer globally and is one of the most important contributors to cancer-related deaths. Earlier diagnosis is known to reduce mortality, and better biomarkers are needed. MiRNA clusters often co-express and target mRNAs in a coordinated fashion, perturbing entire pathways; they thus merit further exploration for diagnostic or prognostic use. MiR-379/656, at chromosome 14q32, is the second largest miRNA cluster in the human genome and implicated in various malignancies including glioblastoma, melanoma, gastrointestinal tumors and ovarian cancer highlighting its potential importance. In this study, we focus on the diagnostic and prognostic potentials of MiR-379/656 in breast cancer and its molecular subtypes. MATERIALS AND METHODS: We analyzed miRNA and mRNA next generation sequencing data from 903 primary tumors and 90 normal controls (source: The Cancer Genome Atlas). The differential expression profile between tumor and normal was analyzed using DeSEQ2. Penalized logistic regression modelling (lasso regression) was used to assess the predictive potential of MiR-379/656 expression for tumor and normal samples. The association between MiR-379/656 expression and overall patient survival was studied using Cox Proportional-Hazard Model. The target mRNAs (validated) of MiR-379/656 were annotated via pathway enrichment analysis to understand the biological significance of the cluster in breast cancer. RESULTS: The differential expression analysis for 1390 miRNAs (miRnome) revealed 310 upregulated (22.3%) and 176 downregulated (12.66%) miRNAs in breast cancer patients compared with controls. For MiR-379/656, 32 miRNAs (32/42; 76%) were downregulated. The MiR-379/656 cluster was found to be the most differentially expressed cluster in the human genome (p < 10-30). The Basal and Luminal B subtypes showed at least 83% (35/42) of the miRNAs to be downregulated. The binomial model prioritized 15 miRNAs, which distinguished breast cancer patients from controls with 99.15 ± 0.58% sensitivity and 77.78 ± 5.24% specificity. Overall, the Basal and Luminal B showed the most effective predictive power with respect to the 15 prioritized miRNAs at MiR-379/656 cluster. The decreased expression of MiR-379/656 was found to be associated with poorer clinical outcome in Basal and Luminal B subtypes, increasing tumor stage and tumor size/extent, and overall patient survival. Pathway enrichment for the validated targets of MiR-379/656 was significant for cancer-related pathways, especially DNA repair, transcriptional regulation by p53 and cell cycle checkpoints (adjusted p-value < 0.05). CONCLUSIONS: Genome informatics analysis of high throughput data for MiR-379/656 cluster has shown that a subset of 15 miRNAs from MiR-379/656 cluster can be used for the diagnostic and prognostic purpose of breast cancer and its subtypes-especially in Basal and Luminal B.

12.
Hum Mutat ; 31(6): 656-66, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20340138

RESUMO

Wnt signaling is a crucial component of the cell machinery orchestrating a series of physiological processes such as cell survival, proliferation, and migration. Among the plethora of roles that Wnt signaling plays, its canonical branch regulates eye organogenesis and angiogenesis. Mutations in the genes encoding the low density lipoprotein receptor protein 5 (LRP5) and frizzled 4 (FZD4), acting as coreceptors for Wnt ligands, cause familial exudative vitreoretinopathy (FEVR). Moreover, mutations in the gene encoding NDP, a ligand for these Wnt receptors, cause Norrie disease and FEVR. Both FEVR and Norrie disease share similar phenotypic characteristics, including abnormal vascularization of the peripheral retina and formation of fibrovascular masses in the eye that can lead to blindness. In this mutation update, we report 21 novel variants for FZD4, LRP5, and NDP, and discuss the putative functional consequences of missense mutations. In addition, we provide a comprehensive overview of all previously published variants in the aforementioned genes and summarize the phenotypic characteristics in mouse models carrying mutations in the orthologous genes. The increasing molecular understanding of Wnt signaling, related to ocular development and blood supply, offers more tools for accurate disease diagnosis that may be important in the development of therapeutic interventions.


Assuntos
Receptores Frizzled/genética , Proteínas Relacionadas a Receptor de LDL/genética , Mutação , Receptores Acoplados a Proteínas G/genética , Doenças Retinianas/genética , Vitreorretinopatia Proliferativa/genética , Animais , Sítios de Ligação/genética , Modelos Animais de Doenças , Proteínas do Olho/química , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Saúde da Família , Receptores Frizzled/química , Receptores Frizzled/metabolismo , Humanos , Proteínas Relacionadas a Receptor de LDL/química , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo
13.
Hum Genet ; 128(3): 281-91, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20563892

RESUMO

Microcephaly, mental retardation and congenital retinal folds along with other systemic features have previously been reported as a separate clinical entity. The sporadic nature of the syndrome and lack of clear inheritance patterns pointed to a genetic heterogeneity. Here, we report a genetic analysis of a female patient with microcephaly, congenital bilateral falciform retinal folds, nystagmus, and mental retardation. Karyotyping revealed a de novo pericentric inversion in chromosome 6 with breakpoints in 6p12.1 and 6q21. Fluorescence in situ hybridization analysis narrowed down the region around the breakpoints, and the breakpoint at 6q21 was found to disrupt the CDK19 gene. CDK19 was found to be expressed in a diverse range of tissues including fetal eye and fetal brain. Quantitative PCR of the CDK19 transcript from Epstein-Barr virus-transformed lymphoblastoid cell lines of the patient revealed ~50% reduction in the transcript (p = 0.02), suggesting haploinsufficiency of the gene. cdk8, the closest orthologue of human CDK19 in Drosophila has been shown to play a major role in eye development. Conditional knock-down of Drosophila cdk8 in multiple dendrite (md) neurons resulted in 35% reduced dendritic branching and altered morphology of the dendritic arbour, which appeared to be due in part to a loss of small higher order branches. In addition, Cdk8 mutant md neurons showed diminished dendritic fields revealing an important role of the CDK19 orthologue in the developing nervous system of Drosophila. This is the first time the CDK19 gene, a component of the mediator co-activator complex, has been linked to a human disease.


Assuntos
Anormalidades Múltiplas/genética , Quinases Ciclina-Dependentes/genética , Deficiência Intelectual/genética , Microcefalia/genética , Retina/anormalidades , Adulto , Animais , Sequência de Bases , Inversão Cromossômica , Cromossomos Humanos Par 6/genética , Quinase 8 Dependente de Ciclina/genética , Primers do DNA/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Especificidade da Espécie
14.
Noncoding RNA ; 6(2)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498345

RESUMO

RNA editing is a post-transcriptional modification, which can provide tissue-specific functions not encoded in DNA. Adenosine-to-inosine is the predominant editing event and, along with cytosine-to-uracil changes, constitutes canonical editing. The rest is non-canonical editing. In this study, we have analysed non-canonical editing of microRNAs in the human brain. We have performed massively parallel small RNA sequencing of frontal cortex (FC) and corpus callosum (CC) pairs from nine normal individuals (post-mortem). We found 113 and 90 unique non-canonical editing events in FC and CC samples, respectively. More than 70% of events were in the miRNA seed sequence-implicating an altered set of target mRNAs and possibly resulting in a functional consequence. Up to 15% of these events were recurring and found in at least three samples, also supporting the biological relevance of such variations. Two specific sequence variations, C-to-A and G-to-U, accounted for over 80% of non-canonical miRNA editing events-and revealed preferred sequence motifs. Our study is one of the first reporting non-canonical editing in miRNAs in the human brain. Our results implicate miRNA non-canonical editing as one of the contributing factors towards transcriptomic diversity in the human brain.

15.
Sci Rep ; 10(1): 1368, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992760

RESUMO

Fusion transcripts can contribute to diversity of molecular networks in the human cortex. In this study, we explored the occurrence of fusion transcripts in normal human cortex along with single neurons and astrocytes. We identified 1305 non-redundant fusion events from 388 transcriptomes representing 59 human cortices and 329 single cells. Our results indicate while the majority of fusion transcripts in human cortex are intra-chromosomal (85%), events found in single neurons and astrocytes were primarily inter-chromosomal (80%). The number of fusions in single neurons was significantly higher than that in single astrocytes (p < 0.05), indicating fusion as a possible contributor towards transcriptome diversity in neuronal cells. The identified fusions were largely private and 4 specific recurring events were found both in cortex and in single neurons but not in astrocytes. We found a significant increase in the number of fusion transcripts in human brain with increasing age both in single cells and whole cortex (p < 0.0005 and < 0.005, respectively). This is likely one of the many possible contributors for the inherent plasticity of the adult brain. The fusion transcripts in fetal brain were enriched for genes for long-term depression; while those in adult brain involved genes enriched for long-term potentiation pathways. Our findings demonstrate fusion transcripts are naturally occurring phenomenon spanning across the health-disease continuum, and likely contribute to the diverse molecular network of human brain.


Assuntos
Envelhecimento/fisiologia , Astrócitos/metabolismo , Lobo Frontal/metabolismo , Substância Cinzenta/metabolismo , Neurônios/metabolismo , RNA Mensageiro/biossíntese , Transcriptoma/fisiologia , Adulto , Astrócitos/citologia , Feminino , Lobo Frontal/citologia , Substância Cinzenta/citologia , Humanos , Recém-Nascido , Potenciação de Longa Duração/fisiologia , Masculino , Neurônios/citologia
16.
Sci Rep ; 10(1): 5034, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193494

RESUMO

Autism spectrum disorder (ASD) is a complex disorder with an unclear aetiology and an estimated global prevalence of 1%. However, studies of ASD in the Vietnamese population are limited. Here, we first conducted whole exome sequencing (WES) of 100 children with ASD and their unaffected parents. Our stringent analysis pipeline was able to detect 18 unique variants (8 de novo and 10 ×-linked, all validated), including 12 newly discovered variants. Interestingly, a notable number of X-linked variants were detected (56%), and all of them were found in affected males but not in affected females. We uncovered 17 genes from our ASD cohort in which CHD8, DYRK1A, GRIN2B, SCN2A, OFD1 and MDB5 have been previously identified as ASD risk genes, suggesting the universal aetiology of ASD for these genes. In addition, we identified six genes that have not been previously reported in any autism database: CHM, ENPP1, IGF1, LAS1L, SYP and TBX22. Gene ontology and phenotype-genotype analysis suggested that variants in IGF1, SYP and LAS1L could plausibly confer risk for ASD. Taken together, this study adds to the genetic heterogeneity of ASD and is the first report elucidating the genetic landscape of ASD in Vietnamese children.


Assuntos
Transtorno do Espectro Autista/genética , Adolescente , Transtorno do Espectro Autista/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Variação Genética , Heterozigoto , Humanos , Fator de Crescimento Insulin-Like I/genética , Masculino , Proteínas Nucleares/genética , Sinaptofisina/genética , Vietnã/epidemiologia , Sequenciamento do Exoma
18.
Sci Rep ; 8(1): 7673, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769662

RESUMO

Clustered miRNAs can affect functioning of downstream pathways due to possible coordinated function. We observed 78-88% of the miR-379/miR-656 cluster (C14MC) miRNAs were downregulated in three sub-types of diffuse gliomas, which was also corroborated with analysis from The Cancer Genome Atlas (TCGA) datasets. The miRNA expression levels decreased with increasing tumor grade, indicating this downregulation as an early event in gliomagenesis. Higher expression of the C14MC miRNAs significantly improved glioblastioma prognosis (Pearson's r = 0.62; p < 3.08e-22). ENCODE meta-data analysis, followed by reporter assays validated existence of two novel internal regulators within C14MC. CRISPR activation of the most efficient internal regulator specifically induced members of the downstream miRNA sub-cluster and apoptosis in glioblastoma cells. Luciferase assays validated novel targets for miR-134 and miR-485-5p, two miRNAs from C14MC with the most number of target genes relevant for glioma. Overexpression of miR-134 and miR-485-5p in human glioblastoma cells suppressed invasion and proliferation, respectively. Furthermore, apoptosis was induced by both miRs, individually and in combination. The results emphasize the tumor suppressive role of C14MC in diffuse gliomas, and identifies two specific miRNAs with potential therapeutic value and towards better disease management and therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , MicroRNAs/genética , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Invasividade Neoplásica , Fenótipo , Células Tumorais Cultivadas
20.
Mol Vis ; 13: 1793-801, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17960117

RESUMO

PURPOSE: Glaucoma is the second most prevalent cause of blindness worldwide, projected to affect more than 60 million people by 2010, 75% of which represents primary open angle glaucoma (POAG). Of the three genes, namely, Myocilin (MYOC), Optineurin (OPTN), and WD repeat-containing protein 36 (WDR36), which have been shown to cause POAG when defective, MYOC is the most frequently mutated gene, accounting for 3%-4% of all POAG cases. The purpose of this study was identification and functional characterization of MYOC mutations in adult-onset, high-pressure POAG patients from The Netherlands. METHODS: The following criteria were required for study participants to be included: have at least two affected family members, an age of diagnosis of more than 35 years, intraocular pressure (IOP) of more than 22 mmHg, glaucomatous optic neuropathy in both eyes, visual field loss consistent with assessed optic neuropathy in at least one eye, and an open anterior chamber angle without morphological abnormalities by gonioscopy. Sequence analysis was performed in genomic DNA of 30 probands for the protein coding region of the MYOC gene. A Chinese hamster ovarian cell line (CHO-K1) was used to express wild type and mutant MYOC protein. Detergent solubility of MYOC was assayed and its secretory property was analyzed by immunoprecipitation. RESULTS: We recruited 250 individuals from 30 families (120 affected and 130 unaffected family members) with a positive history of POAG. We identified a novel mutation c.1288T>C (p.Phe430Leu) in exon 3 of MYOC in two unrelated families showing the same haplotype around the mutant allele. The novel mutation segregated completely with the disease in these families and was absent in 250 ethnically matched controls. All patients harboring this mutation showed severe glaucomatous damage, pointing to the deleterious effect of this mutation. Compared to the wild type, the mutant protein was less soluble when extracted with Triton X-100 and was secretion-defective. CONCLUSIONS: The novel MYOC mutation, p.Phe430Leu, has the same origin in both POAG families from The Netherlands. The pathogenic nature of this mutation is suggested by the severe phenotype of mutant patients and mistrafficking of mutant protein as observed for other severe disease-causing mutations of MYOC.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Olho/genética , Glaucoma de Ângulo Aberto/genética , Glicoproteínas/genética , Mutação , Adulto , Idade de Início , Idoso , Alelos , Animais , Células CHO , Cricetinae , Cricetulus , Éxons , Feminino , Glaucoma de Ângulo Aberto/epidemiologia , Glaucoma de Ângulo Aberto/fisiopatologia , Haplótipos , Humanos , Leucina , Masculino , Países Baixos , Linhagem , Fenilalanina , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA