Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(12): 8011-8023, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36958815

RESUMO

Altered vestibular signaling and body unloading in microgravity results in sensory reweighting and adaptation. Microgravity effects are well-replicated in head-down tilt bed rest (HDBR). Artificial gravity (AG) is a potential countermeasure to mitigate the effects of microgravity on human physiology and performance. We examined the effectiveness of daily AG for mitigating brain and/or behavioral changes in 60 days of HDBR. One group received AG for 30 minutes daily (AG; n = 16) and a control group spent the same time in HDBR but received no AG (CTRL; n = 8). All participants performed a sensorimotor adaptation task five times during fMRI scanning: twice prior to HDBR, twice during HDBR, and once following HDBR. The AG group showed similar behavioral adaptation effects compared with the CTRLs. We identified decreased brain activation in the AG group from pre to late HDBR in the cerebellum for the task baseline portion and in the thalamus, calcarine, cuneus, premotor cortices, and superior frontal gyrus in the AG group during the early adaptation phase. The two groups also exhibited differential brain-behavior correlations. Together, these results suggest that AG may result in a reduced recruitment of brain activity for basic motor processes and sensorimotor adaptation. These effects may stem from the somatosensory and vestibular stimulation that occur with AG.


Assuntos
Encéfalo , Gravidade Alterada , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cerebelo/diagnóstico por imagem , Adaptação Fisiológica
2.
Cereb Cortex ; 33(6): 2641-2654, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35704860

RESUMO

We studied the longitudinal effects of approximately 6 months of spaceflight on brain activity and task-based connectivity during a spatial working memory (SWM) task. We further investigated whether any brain changes correlated with changes in SWM performance from pre- to post-flight. Brain activity was measured using functional magnetic resonance imaging while astronauts (n = 15) performed a SWM task. Data were collected twice pre-flight and 4 times post-flight. No significant effects on SWM performance or brain activity were found due to spaceflight; however, significant pre- to post-flight changes in brain connectivity were evident. Superior occipital gyrus showed pre- to post-flight reductions in task-based connectivity with the rest of the brain. There was also decreased connectivity between the left middle occipital gyrus and the left parahippocampal gyrus, left cerebellum, and left lateral occipital cortex during SWM performance. These results may reflect increased visual network modularity with spaceflight. Further, increased visual and visuomotor connectivity were correlated with improved SWM performance from pre- to post-flight, while decreased visual and visual-frontal cortical connectivity were associated with poorer performance post-flight. These results suggest that while SWM performance remains consistent from pre- to post-flight, underlying changes in connectivity among supporting networks suggest both disruptive and compensatory alterations due to spaceflight.


Assuntos
Memória de Curto Prazo , Voo Espacial , Encéfalo/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética/métodos
3.
Neuroimage ; 278: 120261, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422277

RESUMO

Spaceflight has numerous untoward effects on human physiology. Various countermeasures are under investigation including artificial gravity (AG). Here, we investigated whether AG alters resting-state brain functional connectivity changes during head-down tilt bed rest (HDBR), a spaceflight analog. Participants underwent 60 days of HDBR. Two groups received daily AG administered either continuously (cAG) or intermittently (iAG). A control group received no AG. We assessed resting-state functional connectivity before, during, and after HDBR. We also measured balance and mobility changes from pre- to post-HDBR. We examined how functional connectivity changes throughout HDBR and whether AG is associated with differential effects. We found differential connectivity changes by group between posterior parietal cortex and multiple somatosensory regions. The control group exhibited increased functional connectivity between these regions throughout HDBR whereas the cAG group showed decreased functional connectivity. This finding suggests that AG alters somatosensory reweighting during HDBR. We also observed brain-behavioral correlations that differed significantly by group. Control group participants who showed increased connectivity between the putamen and somatosensory cortex exhibited greater mobility declines post-HDBR. For the cAG group, increased connectivity between these regions was associated with little to no mobility declines post-HDBR. This suggests that when somatosensory stimulation is provided via AG, functional connectivity increases between the putamen and somatosensory cortex are compensatory in nature, resulting in reduced mobility declines. Given these findings, AG may be an effective countermeasure for the reduced somatosensory stimulation that occurs in both microgravity and HDBR.


Assuntos
Gravidade Alterada , Voo Espacial , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Córtex Somatossensorial/diagnóstico por imagem
4.
Neuroimage ; 225: 117450, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33075558

RESUMO

Astronauts are exposed to microgravity and elevated CO2 levels onboard the International Space Station. Little is known about how microgravity and elevated CO2 combine to affect the brain and sensorimotor performance during and after spaceflight. Here we examined changes in resting-state functional connectivity (FC) and sensorimotor behavior associated with a spaceflight analog environment. Participants underwent 30 days of strict 6o head-down tilt bed rest with elevated ambient CO2 (HDBR+CO2). Resting-state functional magnetic resonance imaging and sensorimotor assessments were collected 13 and 7 days prior to bed rest, on days 7 and 29 of bed rest, and 0, 5, 12, and 13 days following bed rest. We assessed the time course of FC changes from before, during, to after HDBR+CO2. We then compared the observed connectivity changes with those of a HDBR control group that underwent HDBR in standard ambient air. Moreover, we assessed associations between post-HDBR+CO2 FC changes and alterations in sensorimotor performance. HDBR+CO2 was associated with significant changes in functional connectivity between vestibular, visual, somatosensory and motor brain areas. Several of these sensory and motor regions showed post-HDBR+CO2 FC changes that were significantly associated with alterations in sensorimotor performance. We propose that these FC changes reflect multisensory reweighting associated with adaptation to the HDBR+CO2 microgravity analog environment. This knowledge will further improve HDBR as a model of microgravity exposure and contribute to our knowledge of brain and performance changes during and after spaceflight.


Assuntos
Encéfalo/diagnóstico por imagem , Dióxido de Carbono , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Voo Espacial , Simulação de Ausência de Peso , Adulto , Repouso em Cama , Encéfalo/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Hipercapnia , Locomoção , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Propriocepção
5.
J Neurophysiol ; 125(2): 426-436, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296611

RESUMO

Aboard the International Space Station (ISS), astronauts must adapt to altered vestibular and somatosensory inputs due to microgravity. Sensorimotor adaptation on Earth is often studied with a task that introduces visuomotor conflict. Retention of the adaptation process, known as savings, can be measured when subjects are exposed to the same adaptive task multiple times. It is unclear how adaptation demands found on the ISS might interfere with the ability to adapt to other sensory conflict at the same time. In the present study, we investigated the impact of 30 days' head-down tilt bed rest combined with elevated carbon dioxide (HDBR + CO2) as a spaceflight analog on sensorimotor adaptation. Eleven subjects used a joystick to move a cursor to targets presented on a computer screen under veridical cursor feedback and 45° rotated feedback. During this NASA campaign, five individuals presented with optic disk edema, a sign of spaceflight-associated neuro-ocular syndrome (SANS). Thus, we also performed post hoc exploratory analyses between subgroups who did and did not show signs of SANS. HDBR + CO2 had some impact on sensorimotor adaptation, with a lack of savings across the whole group. SANS individuals showed larger, more persistent after-effects, suggesting a shift from relying on cognitive to more implicit processing of adaptive behaviors. Overall, these findings suggest that HDBR + CO2 alters the way in which individuals engage in sensorimotor processing. These findings have important implications for missions and mission training, which require individuals to adapt to altered sensory inputs over long periods in space.NEW & NOTEWORTHY This is the first bed rest campaign examining sensorimotor adaptation and savings in response to the combined effect of HDBR + CO2 and to observe signs of spaceflight-associated neuro-ocular syndrome (SANS) in HDBR participants. Our findings suggest that HDBR + CO2 alters the way that individuals engage in sensorimotor processing. Individuals who developed signs of SANS seem to rely more on implicit rather than cognitive processing of adaptive behaviors than subjects who did not present signs of SANS.


Assuntos
Adaptação Fisiológica , Dióxido de Carbono/farmacologia , Desempenho Psicomotor , Córtex Sensório-Motor/fisiologia , Simulação de Ausência de Peso/efeitos adversos , Adulto , Repouso em Cama/efeitos adversos , Feminino , Decúbito Inclinado com Rebaixamento da Cabeça/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Sensório-Motor/efeitos dos fármacos
6.
Hum Brain Mapp ; 42(13): 4281-4297, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34105833

RESUMO

Following long-duration spaceflight, some astronauts exhibit ophthalmic structural changes referred to as Spaceflight Associated Neuro-ocular Syndrome (SANS). Optic disc edema is a common sign of SANS. The origin and effects of SANS are not understood as signs of SANS have not manifested in previous spaceflight analog studies. In the current spaceflight analog study, 11 subjects underwent 30 days of strict head down-tilt bed rest in elevated ambient carbon dioxide (HDBR+CO2 ). Using functional magnetic resonance imaging (fMRI), we acquired resting-state fMRI data at 6 time points: before (2), during (2), and after (2) the HDBR+CO2 intervention. Five participants developed optic disc edema during the intervention (SANS subgroup) and 6 did not (NoSANS group). This occurrence allowed us to explore whether development of signs of SANS during the spaceflight analog impacted resting-state functional connectivity during HDBR+CO2 . In light of previous work identifying genetic and biochemical predictors of SANS, we further assessed whether the SANS and NoSANS subgroups exhibited differential patterns of resting-state functional connectivity prior to the HDBR+CO2 intervention. We found that the SANS and NoSANS subgroups exhibited distinct patterns of resting-state functional connectivity changes during HDBR+CO2 within visual and vestibular-related brain networks. The SANS and NoSANS subgroups also exhibited different resting-state functional connectivity prior to HDBR+CO2 within a visual cortical network and within a large-scale network of brain areas involved in multisensory integration. We further present associations between functional connectivity within the identified networks and previously identified genetic and biochemical predictors of SANS. Subgroup differences in resting-state functional connectivity changes may reflect differential patterns of visual and vestibular reweighting as optic disc edema develops during the spaceflight analog. This finding suggests that SANS impacts not only neuro-ocular structures, but also functional brain organization. Future prospective investigations incorporating sensory assessments are required to determine the functional significance of the observed connectivity differences.


Assuntos
Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Conectoma , Rede Nervosa/fisiologia , Papiledema/etiologia , Papiledema/fisiopatologia , Voo Espacial , Adulto , Repouso em Cama , Dióxido de Carbono , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Feminino , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
7.
South Med J ; 107(9): 549-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25188617

RESUMO

OBJECTIVE: Primary care physicians need good screening tests of the vestibular system to help them determine whether patients who complain of dizziness should be evaluated for vestibular disorders. The goal of this study was to determine whether current, widely used screening tests of the vestibular system predict subsequent performance on objective diagnostic tests of the vestibular system (ENG). METHODS: Of 300 subjects who were recruited from the waiting room of a primary care clinic and were screened there, 69 subjects subsequently volunteered for ENGs in the otolaryngology department. The screening study included age, history of vertigo, head impulse tests, Dix-Hallpike maneuvers, and the Clinical Test of Sensory Integration and Balance with the head still and the head pitching at 0.33 Hz. The ENG included Dix-Hallpike maneuvers, vestibular-evoked myogenic potentials, bithermal water caloric tests, and low-frequency sinusoids in the rotatory chair in darkness. RESULTS: The scores on the screening were related to the total ENG, but odds ratios were not significant for some variables, probably because of the small sample size. CONCLUSIONS: A larger sample may have yielded stronger results, but in general the high odds ratios suggest a relation between the ENG score and Dix-Hallpike responses and between the ENG scores and some Clinical Test of Sensory Integration and Balance responses.


Assuntos
Visita a Consultório Médico , Atenção Primária à Saúde , Doenças Vestibulares/diagnóstico , Testes de Função Vestibular , Adulto , Idoso , Tontura/diagnóstico , Tontura/etiologia , Feminino , Humanos , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Exame Físico , Equilíbrio Postural , Valor Preditivo dos Testes , Doenças Vestibulares/complicações , Doenças Vestibulares/fisiopatologia , Potenciais Evocados Miogênicos Vestibulares , Adulto Jovem
8.
BMC Neurol ; 13: 205, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24350728

RESUMO

BACKGROUND: Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether spaceflight also affects other central nervous system functions such as cognition is yet largely unknown, but of importance in consideration of the health and performance of crewmembers both in- and post-flight. We are therefore conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor and cognitive performance changes. Here we present the protocol of our study. METHODS/DESIGN: This study includes three groups (astronauts, bed rest subjects, ground-based control subjects) for which each the design is single group with repeated measures. The effects of spaceflight on the brain will be investigated in astronauts who will be assessed at two time points pre-, at three time points during-, and at four time points following a spaceflight mission of six months. To parse out the effect of microgravity from the overall effects of spaceflight, we investigate the effects of seventy days head-down tilted bed rest. Bed rest subjects will be assessed at two time points before-, two time points during-, and three time points post-bed rest. A third group of ground based controls will be measured at four time points to assess reliability of our measures over time. For all participants and at all time points, except in flight, measures of neurocognitive performance, fine motor control, gait, balance, structural MRI (T1, DTI), task fMRI, and functional connectivity MRI will be obtained. In flight, astronauts will complete some of the tasks that they complete pre- and post flight, including tasks measuring spatial working memory, sensorimotor adaptation, and fine motor performance. Potential changes over time and associations between cognition, motor-behavior, and brain structure and function will be analyzed. DISCUSSION: This study explores how spaceflight induced brain changes impact functional performance. This understanding could aid in the design of targeted countermeasures to mitigate the negative effects of long-duration spaceflight.


Assuntos
Medicina Aeroespacial , Encéfalo/fisiologia , Cognição/fisiologia , Voo Espacial , Adolescente , Adulto , Astronautas/psicologia , Repouso em Cama , Encéfalo/irrigação sanguínea , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Locomoção , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo , Microvasos/fisiologia , Pessoa de Meia-Idade , Atividade Motora , Oxigênio/sangue , Postura , Desempenho Psicomotor , Fatores de Risco , Fatores de Tempo , Potenciais Evocados Miogênicos Vestibulares , Ausência de Peso , Adulto Jovem
9.
South Med J ; 106(10): 565-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24096950

RESUMO

OBJECTIVE: Few tests of functional motor behavior are useful for rapidly screening people for lower extremity peripheral neuropathy. The goal of this study was to improve the widely used tandem walking (TW) test. METHODS: We tested "normal" (control) adult and ambulatory patients with peripheral neuropathy (PN) with their eyes open and eyes closed while they performed TW on industrial carpeting in sock-covered feet. Each subject wore a torso-mounted inertial motion unit to measure kinematic data. The data of subjects with PN also were compared with historical data on patients with vestibular impairments. RESULTS: The normal and PN groups differed significantly on TW and on the number of steps completed. PN and vestibular impairments data also differed significantly on both visual conditions. Kinematic data showed that patients with PN were more unstable than normal patients in the group. For the number of steps taken during the eyes open condition, receiver operating characteristic (ROC) values were only 0.81 and for the number of steps taken during the eyes closed condition, ROC values were 0.88. Although not optimal, this ROC value is better. Sensitivity and specificity at a cutoff of two steps were 0.81 and 0.92, respectively, and at a cutoff of three steps were 0.86 and 0.75, respectively. ROC values for kinematic data were <0.8, and when combined with the ROC value for the number of steps, the total ROC value did not improve appreciably. CONCLUSIONS: Although not ideal for screening patients who may have PN, counting the number of steps during TW is a quick and useful clinical test. TW is most sensitive to patients with PN when they are tested with eyes closed.


Assuntos
Doenças do Sistema Nervoso Periférico/diagnóstico , Caminhada , Adulto , Idoso , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Periférico/fisiopatologia , Equilíbrio Postural , Curva ROC , Caminhada/fisiologia
10.
Aviat Space Environ Med ; 84(6): 567-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23745284

RESUMO

BACKGROUND: Locomotor instability may affect planetary extravehicular activities during the initial adaptation to the new gravitational environment. The goal of this study was to quantify the locomotor, cognitive, and metabolic effects of exposure to a discordant sensory environment. METHODS: A treadmill mounted on a 6-degree-of-freedom motion base was used to present 15 healthy subjects with a destabilizing support surface while they walked. Dependent measures of locomotor stability, cognitive load, and metabolic cost were stride frequency (SF), reaction time (RT), and the volume of oxygen consumed (Vo2), respectively. Subjects completed an 8-min baseline walk followed by 20 min of walking with a continuous, sinusoidal, laterally oscillating support-surface perturbation. Data for minutes 1, 7, 13, and 20 of the support-surface perturbation period were compared with the baseline. RESULTS: SF, RT, and Vo2 were significantly greater during support-surface motion than during the baseline walking condition and showed a trend toward recovery to baseline levels during the perturbation period. Results demonstrated that adaptation to walking in a discordant sensory environment has quantifiable and significant costs in SF, RT, and Vo2 as shown by mean increases of 9%, 20%, and 4%, respectively, collected during the first minute of exposure. By the fourth minute of exposure, mean Vo2 consumption had increased to 20% over its baseline. DISCUSSION: We believe that preflight sensorimotor adaptation training paradigms will impart gains in stability and the ability to multitask, and might increase productive mission time by extending work time in extravehicular activity suits where metabolic expenditure is a limiting factor.


Assuntos
Adaptação Fisiológica , Cognição , Atividade Extraespaçonave/fisiologia , Gravidade Alterada , Consumo de Oxigênio/fisiologia , Caminhada/fisiologia , Adulto , Análise de Variância , Feminino , Marcha/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação , Carga de Trabalho , Adulto Jovem
11.
Sci Rep ; 13(1): 7878, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291238

RESUMO

Spaceflight induces widespread changes in human brain morphology. It is unclear if these brain changes differ with varying mission duration or spaceflight experience history (i.e., novice or experienced, number of prior missions, time between missions). Here we addressed this issue by quantifying regional voxelwise changes in brain gray matter volume, white matter microstructure, extracellular free water (FW) distribution, and ventricular volume from pre- to post-flight in a sample of 30 astronauts. We found that longer missions were associated with greater expansion of the right lateral and third ventricles, with the majority of expansion occurring during the first 6 months in space then appearing to taper off for longer missions. Longer inter-mission intervals were associated with greater expansion of the ventricles following flight; crew with less than 3 years of time to recover between successive flights showed little to no enlargement of the lateral and third ventricles. These findings demonstrate that ventricle expansion continues with spaceflight with increasing mission duration, and inter-mission intervals less than 3 years may not allow sufficient time for the ventricles to fully recover their compensatory capacity. These findings illustrate some potential plateaus in and boundaries of human brain changes with spaceflight.


Assuntos
Voo Espacial , Substância Branca , Humanos , Encéfalo/diagnóstico por imagem , Astronautas , Ventrículos Cerebrais/diagnóstico por imagem
12.
Life (Basel) ; 13(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37763256

RESUMO

Biomarkers, ranging from molecules to behavior, can be used to identify thresholds beyond which performance of mission tasks may be compromised and could potentially trigger the activation of countermeasures. Identification of homologous brain regions and/or neural circuits related to operational performance may allow for translational studies between species. Three discussion groups were directed to use operationally relevant performance tasks as a driver when identifying biomarkers and brain regions or circuits for selected constructs. Here we summarize small-group discussions in tables of circuits and biomarkers categorized by (a) sensorimotor, (b) behavioral medicine and (c) integrated approaches (e.g., physiological responses). In total, hundreds of biomarkers have been identified and are summarized herein by the respective group leads. We hope the meeting proceedings become a rich resource for NASA's Human Research Program (HRP) and the community of researchers.

13.
Exp Brain Res ; 220(1): 1-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22585123

RESUMO

As part of a larger gait adaptability training study, we designed a program that presented combinations of visual flow and support-surface manipulations to investigate the response of healthy adults to walking on a treadmill in novel discordant sensorimotor conditions. A visual dependence score was determined for each subject, and this score was used to explore how visual dependency was linked to locomotor performance (1) during three training sessions and (2) in a new discordant environment presented at the conclusion of training. Performance measures included reaction time (RT), stride frequency (SF), and heart rate (HR), which respectively served as indicators of cognitive load, postural stability, and anxiety. We hypothesized that training would affect performance measures differently for highly visually dependent individuals than for their less visually dependent counterparts. A seemingly unrelated estimation analysis of RT, SF, and HR revealed a significant omnibus interaction of visual dependency by session (p < 0.001), suggesting that the magnitude of differences in these measures across training day 1 (TD1), training day 3 (TD3), and exposure to a novel test is dependent on subjects' levels of visual dependency. The RT result, in particular, suggested that highly visually dependent subjects successfully trained to one set of sensory discordant conditions but were unable to apply their adapted skills when introduced to a new sensory discordant environment. This finding augments rationale for developing customized gait training programs that are tailored to an individual. It highlights one factor--personal level of visual dependency--to consider when designing training conditions for a subject or patient. Finally, the link between visual dependency and locomotor performance may offer predictive insight regarding which subjects in a normal population will require more training when preparing for specific novel locomotor conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Marcha/fisiologia , Equilíbrio Postural/fisiologia , Prática Psicológica , Desempenho Psicomotor/fisiologia , Adulto , Sinais (Psicologia) , Teste de Esforço , Feminino , Lateralidade Funcional , Frequência Cardíaca , Humanos , Masculino , Tempo de Reação/fisiologia , Fatores de Tempo , Tronco/fisiologia , Adulto Jovem
14.
Brain Struct Funct ; 227(6): 2073-2086, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35469104

RESUMO

Motor adaptations to the microgravity environment during spaceflight allow astronauts to perform adequately in this unique environment. Upon return to Earth, this adaptation is no longer appropriate and can be disruptive for mission critical tasks. Here, we measured if metrics derived from MRI scans collected from astronauts can predict motor performance post-flight. Structural and diffusion MRI scans from 14 astronauts collected before launch, and motor measures (balance performance, speed of recovery from fall, and tandem walk step accuracy) collected pre-flight and post-flight were analyzed. Regional measures of gray matter volume (motor cortex, paracentral lobule, cerebellum), myelin density (motor cortex, paracentral lobule, corticospinal tract), and white matter microstructure (corticospinal tract) were derived as a-priori predictors. Additional whole-brain analyses of cortical thickness, cerebellar gray matter, and cortical myelin were also tested for associations with post-flight and pre-to-post-flight motor performance. The pre-selected regional measures were not significantly associated with motor behavior. However, whole-brain analyses showed that paracentral and precentral gyri thickness significantly predicted recovery from fall post-spaceflight. Thickness of vestibular and sensorimotor regions, including the posterior insula and the superior temporal gyrus, predicted balance performance post-flight and pre-to-post-flight decrements. Greater cortical thickness pre-flight predicted better performance post-flight. Regional thickness of somatosensory, motor, and vestibular brain regions has some predictive value for post-flight motor performance in astronauts, which may be used for the identification of training and countermeasure strategies targeted for maintaining operational task performance.


Assuntos
Voo Espacial , Ausência de Peso , Substância Branca , Astronautas , Encéfalo/diagnóstico por imagem , Humanos , Substância Branca/diagnóstico por imagem
15.
Front Neural Circuits ; 16: 784280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310547

RESUMO

The altered vestibular signaling and somatosensory unloading of microgravity result in sensory reweighting and adaptation to conflicting sensory inputs. Aftereffects of these adaptive changes are evident postflight as impairments in behaviors such as balance and gait. Microgravity also induces fluid shifts toward the head and an upward shift of the brain within the skull; these changes are well-replicated in strict head-down tilt bed rest (HDBR), a spaceflight analog environment. Artificial gravity (AG) is a potential countermeasure to mitigate these effects of microgravity. A previous study demonstrated that intermittent (six, 5-mins bouts per day) daily AG sessions were more efficacious at counteracting orthostatic intolerance in a 5 day HDBR study than continuous daily AG. Here we examined whether intermittent daily AG was also more effective than continuous dosing for mitigating brain and behavioral changes in response to 60 days of HDBR. Participants (n = 24) were split evenly between three groups. The first received 30 mins of continuous AG daily (cAG). The second received 30 mins of intermittent AG daily (6 bouts of 5 mins; iAG). The third received no AG (Ctrl). We collected a broad range of sensorimotor, cognitive, and brain structural and functional assessments before, during, and after the 60 days of HDBR. We observed no significant differences between the three groups in terms of HDBR-associated changes in cognition, balance, and functional mobility. Interestingly, the intermittent AG group reported less severe motion sickness symptoms than the continuous group during centrifugation; iAG motion sickness levels were not elevated above those of controls who did not undergo AG. They also had a shorter duration of post-AG illusory motion than cAG. Moreover, the two AG groups performed the paced auditory serial addition test weekly while undergoing AG; their performance was more accurate than that of controls, who performed the test while in HDBR. Although AG did not counteract HDBR-induced gait and balance declines, iAG did not cause motion sickness and was associated with better self-motion perception during AG ramp-down. Additionally, both AG groups had superior cognitive performance while undergoing AG relative to controls; this may reflect attention or motivation differences between the groups.


Assuntos
Gravidade Alterada , Voo Espacial , Repouso em Cama , Cognição , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Humanos
16.
Sci Rep ; 12(1): 7238, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513698

RESUMO

Humans are exposed to extreme environmental stressors during spaceflight and return with alterations in brain structure and shifts in intracranial fluids. To date, no studies have evaluated the effects of spaceflight on perivascular spaces (PVSs) within the brain, which are believed to facilitate fluid drainage and brain homeostasis. Here, we examined how the number and morphology of magnetic resonance imaging (MRI)-visible PVSs are affected by spaceflight, including prior spaceflight experience. Fifteen astronauts underwent six T1-weighted 3 T MRI scans, twice prior to launch and four times following their return to Earth after ~ 6-month missions to the International Space Station. White matter MRI-visible PVS number and morphology were calculated using an established, automated segmentation algorithm. We validated our automated segmentation algorithm by comparing algorithm PVS counts with those identified by two trained raters in 50 randomly selected slices from this cohort; the automated algorithm performed similarly to visual ratings (r(48) = 0.77, p < 0.001). In addition, we found high reliability for four of five PVS metrics across the two pre-flight time points and across the four control time points (ICC(3,k) > 0.50). Among the astronaut cohort, we found that novice astronauts showed an increase in total PVS volume from pre- to post-flight, whereas experienced crewmembers did not (p = 0.020), suggesting that experienced astronauts may exhibit holdover effects from prior spaceflight(s). Greater pre-flight PVS load was associated with more prior flight experience (r = 0.60-0.71), though these relationships did not reach statistical significance (p > 0.05). Pre- to post-flight changes in ventricular volume were not significantly associated with changes in PVS characteristics, and the presence of spaceflight associated neuro-ocular syndrome (SANS) was not associated with PVS number or morphology. Together, these findings demonstrate that PVSs can be consistently identified on T1-weighted MRI scans, and that spaceflight is associated with PVS changes. Specifically, prior spaceflight experience may be an important factor in determining PVS characteristics.


Assuntos
Sistema Glinfático , Voo Espacial , Astronautas , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
17.
Exp Brain Res ; 209(4): 515-24, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21350808

RESUMO

Recent evidence shows that the ability to adapt to a novel discordant sensorimotor environment can be increased through prior training. We aimed to determine whether gait adaptability could be increased and then retained using a training system comprised of a treadmill placed on a motion base facing a virtual visual scene that provided a variety of sensory challenges that served as training modalities. Ten healthy adults participated in three training sessions during which they walked on a treadmill at 1.1 m/s while receiving discordant support-surface and visual manipulations. Upon completion, participants were presented with a novel sensorimotor challenge designed to test for transfer of adaptive skills. During this test, stride frequency, reaction time, and heart rate data were collected as measures of postural stability, cognitive load, and anxiety, respectively. Compared to 10 untrained controls, trained participants showed enhanced overall performance on the Novel Test, which was administered 20 min after their final training session. Subjects in both groups had greater stride frequency, reaction time, and heart rate when exposed to the new sensory environment; however, these increases were less pronounced in the trained subjects than in the controls. The Novel Test was re-administered to both groups 1 week, 1 month, 3 months, and 6 months later. Trained subjects maintained their level of performance for 6 months. Untrained subjects continued to improve in these measures at each subsequent test session, suggesting that a lasting sensorimotor adaptability training effect can be achieved with very short, repeated exposures to discordant sensory conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Marcha/fisiologia , Atividade Motora/fisiologia , Caminhada/fisiologia , Adulto , Teste de Esforço , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Prática Psicológica , Tempo de Reação/fisiologia , Transferência de Experiência
18.
Exp Brain Res ; 210(2): 303-12, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21442221

RESUMO

Stochastic resonance (SR) is a phenomenon whereby the response of a non-linear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. Stochastic resonance using imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, has been shown to significantly improve ocular stabilization reflexes in response to whole-body tilt; improved balance performance during postural disturbances and optimize covariance between the weak input periodic signals introduced via venous blood pressure receptors and the heart rate responses. In our study, 15 subjects stood on a compliant surface with their eyes closed. They were given low-amplitude binaural bipolar stochastic electrical stimulation of the vestibular organs in two frequency ranges of 1-2 and 0-30 Hz over the amplitude range of 0 to ±700 µA. Subjects were instructed to maintain an upright stance during 43-s trials, which consisted of baseline (zero amplitude) and stimulation (non-zero amplitude) periods. Measures of stability of the head and trunk using inertial motion unit sensors attached to these segments and the whole body using a force plate were measured and quantified in the mediolateral plane. Using a multivariate optimization criterion, our results show that the low levels of vestibular stimulation given to the vestibular organs improved balance performance in normal healthy subjects in the range of 5-26% consistent with the stochastic resonance phenomenon. In our study, 8 of 15 and 10 of 15 subjects were responsive for the 1-2- and 0-30-Hz stimulus signals, respectively. The improvement in balance performance did not differ significantly between the stimulations in the two frequency ranges. The amplitude of optimal stimulus for improving balance performance was predominantly in the range of ±100 to ±400 µA. A device based on SR stimulation of the vestibular system might be useful as either a training modality to enhance adaptability or skill acquisition, or as a miniature patch-type stimulator that may be worn by people with disabilities due to aging or disease to improve posture and locomotion function.


Assuntos
Terapia por Estimulação Elétrica/métodos , Equilíbrio Postural/fisiologia , Doenças Vestibulares/terapia , Vestíbulo do Labirinto/fisiologia , Adulto , Humanos , Recuperação de Função Fisiológica/fisiologia , Processos Estocásticos , Resultado do Tratamento , Doenças Vestibulares/fisiopatologia
19.
J Strength Cond Res ; 25(2): 545-55, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21217531

RESUMO

Adequately describing the functional consequences of unweighting (e.g., bed rest, immobilization, spaceflight) requires assessing diverse indices of neuromuscular function (i.e., strength, power, endurance, central activation, force steadiness). Additionally, because unweighting increases the susceptibility of muscle to damage, testing should consider supplementary safety features. The purpose of this study was to develop a test battery for quickly assessing diverse indices of neuromuscular function. Commercially available exercise equipment was modified to include data acquisition hardware (e.g., force plates, position transducers) and auxiliary safety hardware (e.g., magnetic brakes). Ten healthy, ambulatory subjects (31 ± 5 years, 173 ± 11 cm, 73 ± 14 kg) completed a battery of lower- and upper-body neuromuscular function tests on 3 occasions separated by at least 48 hours. The battery consisted of the following tests, in order: (1) knee extension central activation, (2) knee extension force steadiness, (3) leg press maximal strength, (4) leg press maximal power, (5) leg press power endurance, (6) bench press maximal strength, (7) bench press force steadiness, (8) bench press maximal power, and (9) bench press power endurance. Central activation, strength, rate of force development, maximal power, and power endurance (total work) demonstrated good-to-excellent measurement reliability (SEM = 3-14%; intraclass correlation coefficient [ICC] = 0.87-0.99). The SEM of the force steadiness variables was 20-35% (ICC = 0.20-0.60). After familiarization, the test battery required 49 ± 6 minutes to complete. In conclusion, we successfully developed a test battery that could be used to quickly and reliably assess diverse indices of neuromuscular function. Because the test battery involves minimal eccentric muscle actions and impact forces, the potential for muscle injury has likely been reduced.


Assuntos
Teste de Esforço/instrumentação , Força Muscular/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Suporte de Carga/fisiologia , Adulto , Desenho de Equipamento , Segurança de Equipamentos , Feminino , Humanos , Contração Isométrica/fisiologia , Articulação do Joelho/fisiologia , Perna (Membro)/fisiologia , Masculino , Resistência Física , Amplitude de Movimento Articular/fisiologia , Reprodutibilidade dos Testes , Treinamento Resistido/métodos , Estudos de Amostragem , Análise e Desempenho de Tarefas , Fatores de Tempo
20.
Aviat Space Environ Med ; 82(4): 463-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21485405

RESUMO

INTRODUCTION: Astronauts experience alterations in gaze control as a result of adaptive changes in eye-head coordination produced by microgravity exposure. This may lead to potential changes in postflight visual acuity during head and body motion. METHODS: We gathered dynamic visual acuity (DVA) data from 14 astronauts and cosmonauts after long-duration (approximately 6 mo) stays in space. Walking was used to induce self-motion and visual acuity was determined by sequentially presenting Landolt ring optotypes on a computer display placed 4 m in front of subjects. Acuity assessments were made while seated (static condition) and walking (dynamic condition) at 6.4 km x h(-1) on a motorized treadmill. In each condition, a psychophysical threshold detection algorithm minimized the required number of optotype presentations by maximizing the amount displayed around the subject's acuity threshold. The difference between static and dynamic acuity measures provided a metric of change in the subjects' ability to maintain gaze fixation on the visual target while walking. RESULTS: A decrement in postflight visual acuity during walking was found. A mean dynamic acuity decrement of approximately 0.75 eye-chart lines was observed 1 d after returning from space. The population mean showed a consistent improvement in DVA performance during the first postflight week. DISCUSSION: The recovery curves for individual subjects did not necessarily follow a pattern of continuous improvement with each passing day. When adjusted for previous long-duration flight experience, the population mean showed an unexpected DVA reduction in the re-adaptation curve that is similar to recovery patterns observed in prism adaptation studies.


Assuntos
Astronautas , Voo Espacial , Acuidade Visual , Caminhada , Ausência de Peso , Adulto , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reflexo Vestíbulo-Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA