Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Psychophysiology ; 61(7): e14557, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38459638

RESUMO

When memorizing an integrated object such as a Kanizsa figure, the completion of parts into a coherent whole is attained by grouping processes which render a whole-object representation in visual working memory (VWM). The present study measured event-related potentials (ERPs) and oscillatory amplitudes to track these processes of encoding and representing multiple features of an object in VWM. To this end, a change detection task was performed, which required observers to memorize both the orientations and colors of six "pacman" items while inducing configurations of the pacmen that systematically varied in terms of their grouping strength. The results revealed an effect of object configuration in VWM despite physically constant visual input: change detection for both orientation and color features was more accurate with increased grouping strength. At the electrophysiological level, the lateralized ERPs and alpha activity mirrored this behavioral pattern. Perception of the orientation features gave rise to the encoding of a grouped object as reflected by the amplitudes of the Ppc. The grouped object structure, in turn, modulated attention to both orientation and color features as indicated by the enhanced N1pc and N2pc. Finally, during item retention, the representation of individual objects and the concurrent allocation of attention to these memorized objects were modulated by grouping, as reflected by variations in the CDA amplitude and a concurrent lateralized alpha suppression, respectively. These results indicate that memorizing multiple features of grouped, to-be-integrated objects involves multiple, sequential stages of processing, providing support for a hierarchical model of object representations in VWM.


Assuntos
Ritmo alfa , Eletroencefalografia , Potenciais Evocados , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Masculino , Feminino , Adulto Jovem , Ritmo alfa/fisiologia , Potenciais Evocados/fisiologia , Adulto , Percepção Visual/fisiologia , Atenção/fisiologia , Estimulação Luminosa , Reconhecimento Visual de Modelos/fisiologia
2.
Psychol Res ; 88(2): 417-437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37819500

RESUMO

Some studies have suggested that emotion-associated features might influence attentional capture. However, demonstrating valence-dependent distractor interference has proven challenging, possibly due to the neglect of individuals' color-valence preferences in standard, averaged reaction-time (RT) measures. To address this, we investigated valence-driven attentional-capture using an association phase in which emotionally neutral vs. positive-feedback photographs were paired with two alternative target colors, red vs. green. This was followed by a test phase requiring participants to search for a pop-out shape target in the presence or absence of an emotion-associated color. In Experiments 1 and 2, this color could only appear in a distractor, while in Experiment 3, it appeared in the target. Analyzing the standard, averaged RT measures, we found no significant valence association or valence-modulated attentional capture. However, correlational analyses revealed a positive relationship between individual participants' color-valence preference during the association phase and their valence-based effect during the test phase. Moreover, most individuals favored red over green in the association phase, leading to marked color-related asymmetries in the average measures. Crucially, the presence of the valence-preferred color anywhere in the test display facilitated RTs. This effect persisted even when the color appeared in one of the distractors (Experiments 1 and 2), at variance with this distractor capturing attention. These findings suggest that task-irrelevant valence-preferred color signals were registered pre-attentively and boosted performance, likely by raising the general (non-spatial) alertness level. However, these signals were likely kept out of attentional-priority computation to prevent inadvertent attentional capture.


Assuntos
Atenção , Emoções , Humanos , Tempo de Reação , Percepção de Cores
3.
J Cogn Neurosci ; 35(4): 543-570, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735602

RESUMO

Redundant combination of target features from separable dimensions can expedite visual search. The dimension-weighting account explains these "redundancy gains" by assuming that the attention-guiding priority map integrates the feature-contrast signals generated by targets within the respective dimensions. The present study investigated whether this hierarchical architecture is sufficient to explain the gains accruing from redundant targets defined by features in different modalities, or whether an additional level of modality-specific priority coding is necessary, as postulated by the modality-weighting account (MWA). To address this, we had observers perform a visuo-tactile search task in which targets popped out by a visual feature (color or shape) or a tactile feature (vibro-tactile frequency) as well as any combination of these features. The RT gains turned out larger for visuo-tactile versus visual redundant targets, as predicted by the MWA. In addition, we analyzed two lateralized event-related EEG components: the posterior (PCN) and central (CCN) contralateral negativities, which are associated with visual and tactile attentional selection, respectively. The CCN proved to be a stable somatosensory component, unaffected by cross-modal redundancies. In contrast, the PCN was sensitive to cross-modal redundancies, evidenced by earlier onsets and higher amplitudes, which could not be explained by linear superposition of the earlier CCN onto the later PCN. Moreover, linear mixed-effect modeling of the PCN amplitude and timing parameters accounted for approximately 25% of the behavioral RT variance. Together, these behavioral and PCN effects support the hierarchy of priority-signal computation assumed by the MWA.


Assuntos
Atenção , Tato , Humanos
4.
Psychol Sci ; 34(10): 1087-1100, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37650877

RESUMO

Visual working memory (VWM) is limited in capacity, though memorizing meaningful objects may refine this limitation. However, meaningful and meaningless stimuli typically differ perceptually, and objects' associations with meaning are usually already established outside the laboratory, potentially confounding experimental findings. Here, in two experiments with young adults (N = 45 and N = 20), we controlled for these influences by having observers actively learn associations of (for them) initially meaningless stimuli: Chinese characters, half of which were consistently paired with pictures of animals or everyday objects in a learning phase. This phase was preceded and followed by a (pre- and postlearning) change-detection task to assess VWM performance. The results revealed that short-term retention was enhanced after learning, particularly for meaning-associated characters, although participants did not quite reach the accuracy level attained by native Chinese observers (young adults, N = 20). These results thus provide direct experimental evidence that participants' VWM of objects is boosted by them having acquired a long-term-memory association with meaning.

5.
Exp Brain Res ; 241(8): 2081-2096, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37460622

RESUMO

Despite having relatively accurate timing, subjective time can be influenced by various contexts, such as stimulus spacing and sample frequency. Several electroencephalographic (EEG) components have been associated with timing, including the contingent negative variation (CNV), offset P2, and late positive component of timing (LPCt). However, the specific role of these components in the contextual modulation of perceived time remains unclear. In this study, we conducted two temporal bisection experiments to investigate this issue. Participants had to judge whether a test duration was close to a short or long standard. Unbeknownst to them, we manipulated the stimulus spacing (Experiment 1) and sample frequency (Experiment 2) to create short and long contexts while maintaining consistent test ranges and standards across different sessions. The results revealed that the bisection threshold shifted towards the ensemble mean, and both CNV and LPCt were sensitive to context modulation. In the short context, the CNV exhibited an increased climbing rate compared to the long context, whereas the LPCt displayed reduced amplitude and latency. These findings suggest that the CNV represents an expectancy wave preceding a temporal decision process, while the LPCt reflects the decision-making process itself, with both components influenced by the temporal context.


Assuntos
Percepção do Tempo , Humanos , Percepção do Tempo/fisiologia , Eletroencefalografia , Variação Contingente Negativa/fisiologia , Fatores de Tempo
6.
Cereb Cortex ; 32(11): 2398-2411, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34585718

RESUMO

Salient-but-irrelevant stimuli (distractors) co-occurring with search targets can capture attention against the observer's will. Recently, evidence has accumulated that preparatory control can prevent this misguidance of spatial attention in predictable situations. However, the underlying mechanisms have remained elusive. Most pertinent theories assume that attention is guided by specific features. This widespread theoretical claim provides several strong predictions with regard to distractor handling that are disconfirmed here: Employing electrophysiological markers of covert attentional dynamics, in three experiments, we show that distractors standing out by a feature that is categorically different from the target consistently captures attention. However, equally salient distractors standing out in a different feature dimension are effectively down-weighted, even if unpredictably swapping their defining feature with the target. This shows that preparing for a distractor's feature is neither necessary nor sufficient for successful avoidance of attentional capture. Rather, capture is prevented by preparing for the distractor's feature dimension.


Assuntos
Atenção , Atenção/fisiologia , Tempo de Reação
7.
Cereb Cortex ; 32(13): 2729-2744, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34727169

RESUMO

Observers can learn locations where salient distractors appear frequently to reduce potential interference-an effect attributed to better suppression of distractors at frequent locations. But how distractor suppression is implemented in the visual cortex and within the frontoparietal attention networks remains unclear. We used fMRI and a regional distractor-location learning paradigm with two types of distractors defined in either the same (orientation) or a different (color) dimension to the target to investigate this issue. fMRI results showed that BOLD signals in early visual cortex were significantly reduced for distractors (as well as targets) occurring at the frequent versus rare locations, mirroring behavioral patterns. This reduction was more robust with same-dimension distractors. Crucially, behavioral interference was correlated with distractor-evoked visual activity only for same- (but not different-) dimension distractors. Moreover, with different- (but not same-) dimension distractors, a color-processing area within the fusiform gyrus was activated more when a distractor was present in the rare region versus being absent and more with a distractor in the rare versus frequent locations. These results support statistical learning of frequent distractor locations involving regional suppression in early visual cortex and point to differential neural mechanisms of distractor handling with different- versus same-dimension distractors.


Assuntos
Aprendizagem , Córtex Visual , Imageamento por Ressonância Magnética , Tempo de Reação , Lobo Temporal , Córtex Visual/diagnóstico por imagem , Percepção Visual
8.
J Cogn Neurosci ; 34(9): 1702-1717, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35704553

RESUMO

Using a combination of behavioral and EEG measures in a tactile odd-one-out search task with collocated visual items, we investigated the mechanisms underlying facilitation of search by repeated (vs. nonrepeated) spatial distractor-target configurations ("contextual cueing") when either the tactile (same-modality) or the visual array (different-modality) context was predictive of the location of the tactile singleton target. Importantly, in both conditions, the stimulation was multisensory, consisting of tactile plus visual items, although the target was singled out in the tactile modality and so the visual items were task-irrelevant. We found that when the predictive context was tactile, facilitation of search RTs by repeated configurations was accompanied by, and correlated with, enhanced lateralized ERP markers of pre-attentive (N1, N2) and, respectively focal-attentional processing (contralateral delay activity) not only over central ("somatosensory"), but also posterior ("visual") electrode sites, although the ERP effects were less marked over visual cortex. A similar pattern-of facilitated RTs and enhanced lateralized (N2 and contralateral delay activity) ERP components-was found when the predictive context was visual, although the ERP effects were less marked over somatosensory cortex. These findings indicate that both somatosensory and visual cortical regions contribute to the more efficient processing of the tactile target in repeated stimulus arrays, although their involvement is differentially weighted depending on the sensory modality that contains the predictive information.


Assuntos
Percepção do Tato , Tato , Atenção/fisiologia , Sinais (Psicologia) , Humanos , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Percepção do Tato/fisiologia
9.
Neuroimage ; 263: 119662, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198354

RESUMO

Cognitive complaints of attention/concentration problems are highly frequent in older adults with subjective cognitive decline (SCD). Functional connectivity in the cingulo-opercular network (CON-FC) supports cognitive control, tonic alertness, and visual processing speed. Thus, those complaints in SCD may reflect a decrease in CON-FC. Frontal white-matter tracts such as the forceps minor exhibit age- and SCD-related alterations and, therefore, might influence the CON-FC decrease in SCD. Here, we aimed to determine whether SCD predicts an impairment in CON-FC and whether neurite density in the forceps minor modulates that effect. To do so, we integrated cross-sectional and longitudinal analyses of multimodal data in a latent growth curve modeling approach. Sixty-nine healthy older adults (13 males; 68.33 ± 7.95 years old) underwent resting-state functional and diffusion-weighted magnetic resonance imaging, and the degree of SCD was assessed at baseline with the memory functioning questionnaire (greater score indicating more SCD). Forty-nine of the participants were further enrolled in two follow-ups, each about 18 months apart. Baseline SCD did not predict CON-FC after three years or its rate of change (p-values > 0.092). Notably, however, the forceps minor neurite density did modulate the relation between SCD and CON-FC (intercept; b = 0.21, 95% confidence interval, CI, [0.03, 0.39], p = 0.021), so that SCD predicted a greater CON-FC decrease in older adults with relatively lower neurite density in the forceps minor. The neurite density of the forceps minor, in turn, negatively correlated with age. These results suggest that CON-FC alterations in SCD are dependent upon the forceps minor neurite density. Accordingly, these results imply modifiable age-related factors that could help delay or mitigate both age and SCD-related effects on brain connectivity.


Assuntos
Disfunção Cognitiva , Neuritos , Masculino , Humanos , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Encéfalo , Disfunção Cognitiva/diagnóstico por imagem , Instrumentos Cirúrgicos , Imageamento por Ressonância Magnética/métodos
10.
PLoS Comput Biol ; 17(9): e1009332, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34478446

RESUMO

In visual search tasks, repeating features or the position of the target results in faster response times. Such inter-trial 'priming' effects occur not just for repetitions from the immediately preceding trial but also from trials further back. A paradigm known to produce particularly long-lasting inter-trial effects-of the target-defining feature, target position, and response (feature)-is the 'priming of pop-out' (PoP) paradigm, which typically uses sparse search displays and random swapping across trials of target- and distractor-defining features. However, the mechanisms underlying these inter-trial effects are still not well understood. To address this, we applied a modeling framework combining an evidence accumulation (EA) model with different computational updating rules of the model parameters (i.e., the drift rate and starting point of EA) for different aspects of stimulus history, to data from a (previously published) PoP study that had revealed significant inter-trial effects from several trials back for repetitions of the target color, the target position, and (response-critical) target feature. By performing a systematic model comparison, we aimed to determine which EA model parameter and which updating rule for that parameter best accounts for each inter-trial effect and the associated n-back temporal profile. We found that, in general, our modeling framework could accurately predict the n-back temporal profiles. Further, target color- and position-based inter-trial effects were best understood as arising from redistribution of a limited-capacity weight resource which determines the EA rate. In contrast, response-based inter-trial effects were best explained by a bias of the starting point towards the response associated with a previous target; this bias appeared largely tied to the position of the target. These findings elucidate how our cognitive system continually tracks, and updates an internal predictive model of, a number of separable stimulus and response parameters in order to optimize task performance.


Assuntos
Simulação por Computador , Humanos , Tempo de Reação/fisiologia , Reprodutibilidade dos Testes , Análise e Desempenho de Tarefas
11.
Eur J Neurol ; 29(10): 3017-3027, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35699354

RESUMO

BACKGROUND AND PURPOSE: Fatigue and low sleep quality in multiple sclerosis (MS) are closely related symptoms. Here, the associations between the brain's functional connectivity (FC) and fatigue and low sleep quality were investigated to determine the degree of neural distinctiveness of these symptoms. METHOD: A hundred and four patients with relapsing-remitting MS (age 38.9 ± 10.2 years, 66 females) completed the Modified Fatigue Impact Scale and the Pittsburgh Sleep Quality Index and underwent resting-state functional magnetic resonance imaging. FC was analyzed using independent-component analysis in sensorimotor, default-mode, fronto-parietal and basal-ganglia networks. Multiple linear regression models allowed us to test the association between FC and fatigue and sleep quality whilst controlling for one another as well as for demographic, disease-related and imaging variables. RESULTS: Higher fatigue correlated with lower sleep quality (r = 0.54, p < 0.0001). Higher fatigue was associated with lower FC of the precentral gyrus in the sensorimotor network, the precuneus in the posterior default-mode network and the superior frontal gyrus in the left fronto-parietal network, independently of sleep quality. Lower sleep quality was associated with lower FC of the left intraparietal sulcus in the left fronto-parietal network, independently of fatigue. Specific associations were found between fatigue and the sensorimotor network's global FC and between low sleep quality and the left fronto-parietal network's global FC. CONCLUSION: Despite the high correlation between fatigue and low sleep quality in the clinical picture, our findings clearly indicate that, on the neural level, fatigue and low sleep quality in MS are associated with decreased FC in distinct functional brain networks.


Assuntos
Esclerose Múltipla , Adulto , Encéfalo/patologia , Mapeamento Encefálico/métodos , Fadiga/complicações , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Qualidade do Sono
12.
Eur J Neurosci ; 53(10): 3362-3377, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33764572

RESUMO

Visual information processing requires an efficient visual attention system. The neural theory of visual attention (TVA) proposes that visual processing speed depends on the coordinated activity between frontoparietal and occipital brain areas. Previous research has shown that the coordinated activity between (i.e., functional connectivity and "inter-FC") cingulo-opercular (COn) and right-frontoparietal (RFPn) networks is linked to visual processing speed. However, how inter-FC of COn and RFPn with visual networks links to visual processing speed has not been directly addressed yet. Forty-eight healthy adult participants (27 females) underwent resting-state (rs-)fMRI and performed a whole-report psychophysical task. To obtain inter-FC, we analyzed the entire frequency range available in our rs-fMRI data (i.e., 0.01-0.4 Hz) to avoid discarding neural information. Following previous approaches, we analyzed the data across frequency bins (Hz): Slow-5 (0.01-0.027), Slow-4 (0.027-0.073), Slow-3 (0.073-0.198), and Slow-2 (0.198-0.4). We used the mathematical TVA framework to estimate an individual, latent-level visual processing speed parameter. We found that visual processing speed was negatively associated with inter-FC between RFPn and visual networks in Slow-5 and Slow-2, with no corresponding significant association for inter-FC between COn and visual networks. These results provide the first empirical evidence that links inter-FC between RFPn and visual networks with the visual processing speed parameter. These findings suggest that direct connectivity between occipital and right frontoparietal, but not frontoinsular, regions support visual processing speed.


Assuntos
Mapeamento Encefálico , Percepção Visual , Adulto , Encéfalo , Cognição , Feminino , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem
13.
Hum Brain Mapp ; 42(17): 5581-5594, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418200

RESUMO

Illusory figures demonstrate the visual system's ability to integrate disparate parts into coherent wholes. We probed this object integration process by either presenting an integrated diamond shape or a comparable ungrouped configuration that did not render a complete object. Two tasks were used that either required localization of a target dot (relative to the presented configuration) or discrimination of the dot's luminance. The results showed that only when the configuration was task relevant (in the localization task), performance benefited from the presentation of an integrated object. Concurrent functional magnetic resonance imaging was performed and analyzed using dynamic causal modeling to investigate the (causal) relationship between regions that are associated with illusory figure completion. We found object-specific feedback connections between the lateral occipital cortex (LOC) and early visual cortex (V1/V2). These modulatory connections persisted across task demands and hemispheres. Our results thus provide direct evidence that interactions between mid-level and early visual processing regions engage in illusory figure perception. These data suggest that LOC first integrates inputs from multiple neurons in lower-level cortices, generating a global shape representation while more fine-graded object details are then determined via feedback to early visual areas, independently of the current task demands.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Lobo Occipital/diagnóstico por imagem , Lobo Occipital/fisiologia , Percepção Visual/fisiologia , Adulto , Retroalimentação , Humanos , Ilusões/fisiologia , Modelos Teóricos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia
14.
Psychol Sci ; 32(3): 340-353, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33529541

RESUMO

In this study, we investigated whether alertness training in healthy older adults increases visual processing speed (VPS) and whether functional connectivity in the cingulo-opercular network predicts training gain. Using the theory of visual attention, we derived quantitative estimates of VPS before and after training. In Study 1, 75 healthy older adults participated in alertness training, active-control training, or no training (n = 25 each). A significant Group × Session interaction indicated an increase in VPS in the alertness-training group but not in the control group, despite VPS not differing significantly between groups before training. In Study 2, 29 healthy older adults underwent resting-state functional MRI and then participated in alertness training. Pretraining functional connectivity in the cingulo-opercular network correlated with the individual training-induced change in VPS. In conclusion, results indicate that alertness training improves visual processing in older adults and that functional connectivity in the cingulo-opercular network provides a neural marker for predicting individual training gain.


Assuntos
Cognição , Percepção Visual , Idoso , Encéfalo , Mapeamento Encefálico , Córtex Cerebral , Humanos , Individualidade , Imageamento por Ressonância Magnética , Vias Neurais
15.
Psychol Res ; 85(2): 491-502, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32705336

RESUMO

Attentional orienting towards others' gaze direction or pointing has been well investigated in laboratory conditions. However, less is known about the operation of attentional mechanisms in online naturalistic social interaction scenarios. It is equally plausible that following social directional cues (gaze, pointing) occurs reflexively, and/or that it is influenced by top-down cognitive factors. In a mobile eye-tracking experiment, we show that under natural interaction conditions, overt attentional orienting is not necessarily reflexively triggered by pointing gestures or a combination of gaze shifts and pointing gestures. We found that participants conversing with an experimenter, who, during the interaction, would play out pointing gestures as well as directional gaze movements, continued to mostly focus their gaze on the face of the experimenter, demonstrating the significance of attending to the face of the interaction partner-in line with effective top-down control over reflexive orienting of attention in the direction of social cues.


Assuntos
Atenção/fisiologia , Sinais (Psicologia) , Face , Gestos , Orientação Espacial/fisiologia , Adulto , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
16.
Neuroimage ; 207: 116426, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31794856

RESUMO

Illusory figures demonstrate the visual system's ability to integrate separate parts into coherent, whole objects. The present study was performed to track the neuronal object construction process in human observers, by incrementally manipulating the grouping strength within a given configuration until the emergence of a whole-object representation. Two tasks were employed: First, in the spatial localization task, object completion could facilitate performance and was task-relevant, whereas it was irrelevant in the second, luminance discrimination task. Concurrent functional magnetic resonance imaging (fMRI) used spatial localizers to locate brain regions representing task-critical illusory-figure parts to investigate whether the step-wise object construction process would modulate neural activity in these localized brain regions. The results revealed that both V1 and the lateral occipital complex (LOC, with sub-regions LO1 and LO2) were involved in Kanizsa figure processing. However, completion-specific activations were found predominantly in LOC, where neural activity exhibited a modulation in accord with the configuration's grouping strength, whether or not the configuration was relevant to performing the task at hand. Moreover, right LOC activations were confined to LO2 and responded primarily to surface and shape completions, whereas left LOC exhibited activations in both LO1 and LO2 and was related to encoding shape structures with more detail. Together, these results demonstrate that various grouping properties within a visual scene are integrated automatically in LOC, with sub-regions located in different hemispheres specializing in the component sub-processes that render completed objects.


Assuntos
Encéfalo/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Lobo Occipital/fisiologia , Córtex Visual/fisiologia , Adulto Jovem
17.
Neuroimage ; 207: 116404, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31783114

RESUMO

In mammals, the hippocampus, entorhinal, perirhinal, and parahippocampal cortices (i.e., core regions of the human medial temporal lobes, MTL) are locally interlaced with the adjacent amygdala nuclei at the structural and functional levels. At the global brain level, the human MTL has been described as part of the default mode network and amygdala nuclei as parts of the salience network, with both networks collectively forming a large-scale brain system supporting allostatic-interoceptive functions. We hypothesized (i) that intrinsic functional connectivity of slow activity fluctuations would reveal human MTL subsystems locally extending to the amygdala; and (ii) that these extended local subsystems would be globally embedded in large-scale brain systems supporting allostatic-interoceptive functions. Capitalizing on resting-state fMRI data of three independent samples of cognitively healthy adults (one main and two replication samples: N â€‹= â€‹101, 60, and 29, respectively), we analyzed the functional connectivity of fluctuating ongoing BOLD-activity within and outside the amygdala-MTL in a data-driven way using masked independent component and dual-regression analyses. We found that at the local level, MTL subsystems extend to the amygdala and are functionally organized along the longitudinal amygdala-MTL axis. These subsystems are characterized by consistent involvement of amygdala, hippocampus, and entorhinal cortex, but variable participation of perirhinal and parahippocampal regions. At the global level, amygdala-MTL subsystems selectively connect to salience, thalamic-brainstem, and default mode networks - the major cortical and subcortical components of the allostatic-interoceptive system. These findings provide evidence for integrated amygdala-MTL subsystems in humans, which are embedded within a larger allostatic-interoceptive system.


Assuntos
Tonsila do Cerebelo/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Hipocampo/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Lobo Temporal/fisiologia
18.
Neuroimage ; 208: 116440, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31841682

RESUMO

Aging impacts both visual short-term memory (vSTM) capacity and thalamo-cortical connectivity. According to the Neural Theory of Visual Attention, vSTM depends on the structural connectivity between posterior thalamus and visual occipital cortices (PT-OC). We tested whether aging modifies the association between vSTM capacity and PT-OC structural connectivity. To do so, 66 individuals aged 20-77 years were assessed by diffusion-weighted imaging used for probabilistic tractography and performed a psychophysical whole-report task of briefly presented letter arrays, from which vSTM capacity estimates were derived. We found reduced vSTM capacity, and aberrant PT-OC connection probability in aging. Critically, age modified the relationship between vSTM capacity and PT-OC connection probability: in younger adults, vSTM capacity was negatively correlated with PT-OC connection probability while in older adults, this association was positive. Furthermore, age modified the microstructure of PT-OC tracts suggesting that the inversion of the association between PT-OC connection probability and vSTM capacity with aging might reflect age-related changes in white-matter properties. Accordingly, our results demonstrate that age-related differences in vSTM capacity links with the microstructure and connectivity of PT-OC tracts.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Atenção/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/anatomia & histologia , Lobo Occipital/anatomia & histologia , Tálamo/anatomia & histologia , Percepção Visual/fisiologia , Adulto , Idoso , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Lobo Occipital/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto Jovem
19.
Psychol Sci ; 31(12): 1531-1543, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33119432

RESUMO

Visual search is facilitated when the target is repeatedly encountered at a fixed position within an invariant (vs. randomly variable) distractor layout-that is, when the layout is learned and guides attention to the target, a phenomenon known as contextual cuing. Subsequently changing the target location within a learned layout abolishes contextual cuing, which is difficult to relearn. Here, we used lateralized event-related electroencephalogram (EEG) potentials to explore memory-based attentional guidance (N = 16). The results revealed reliable contextual cuing during initial learning and an associated EEG-amplitude increase for repeated layouts in attention-related components, starting with an early posterior negativity (N1pc, 80-180 ms). When the target was relocated to the opposite hemifield following learning, contextual cuing was effectively abolished, and the N1pc was reversed in polarity (indicative of persistent misguidance of attention to the original target location). Thus, once learned, repeated layouts trigger attentional-priority signals from memory that proactively interfere with contextual relearning after target relocation.


Assuntos
Sinais (Psicologia) , Aprendizagem , Humanos , Tempo de Reação , Percepção Visual
20.
J Vis ; 20(7): 4, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38755793

RESUMO

Spatial attention can be deployed with a narrower focus to process individual items or distributed relatively broadly to process larger parts of a scene. This study investigated how focused- versus distributed-attention modes contribute to the adaptation of context-based memories that guide visual search. In two experiments, participants were either required to fixate the screen center and use peripheral vision for search ("distributed attention"), or they could freely move their eyes, enabling serial scanning of the search array ("focused attention"). Both experiments consisted of an initial learning phase and a subsequent test phase. During learning, participants searched for targets presented either among repeated (invariant) or nonrepeated (randomly generated) spatial layouts of distractor items. Prior research showed that repeated encounters of invariant display arrangements lead to long-term context memory about these arrays, which can then come to guide search (contextual-cueing effect). The crucial manipulation in the test phase was a change of the target location within an otherwise constant distractor layout, which has previously been shown to abolish the cueing effect. The current results replicated these findings, although importantly only when attention was focused. By contrast, with distributed attention, the cueing effect recovered rapidly and attained a level comparable to the initial effect (before the target location change). This indicates that contextual cueing can adapt more easily when attention is distributed, likely because a broad attentional set facilitates the flexible updating of global (distractor-distractor), as compared to more local (distractor-target), context representations-allowing local changes to be incorporated more readily.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA