Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(23): 12795-13208, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967475

RESUMO

Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.

2.
Angew Chem Int Ed Engl ; : e202407881, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830820

RESUMO

Aqueous zinc metal batteries are emerging as a promising alternative for energy storage due to their high safety and low cost. However, their development is hindered by the formation of Zn dendrites and side reactions. Herein, a macromolecular crowding electrolyte (MCE40) is prepared by incorporating polyvinylpyrrolidone (PVP) into the aqueous solutions, exhibiting an enlarged electrochemical stability window and anti-freezing properties. Notably, through electrochemical measurements and characterizations, it is discovered that the mass transfer limitation near the electrode surface within the MCE40 electrolyte inhibits the (002) facets. This leads to the crystallographic reorientation of Zn deposition to expose the (100) and (101) textures, which undergo a "nucleation-merge-growth" process to form a uniform and compact Zn deposition. Consequently, the MCE40 enables highly reversible and stable Zn plating/stripping in Zn/Cu half cells over 600 cycles and in Zn/Zn symmetric cells for over 3000 hours at 1.0 mA cm-2. Furthermore, Na0.33V2O5/Zn and α-MnO2/Zn full cells display promising capacity and sustained stability over 500 cycles at room and sub-zero temperatures. This study highlights a novel electrochemical mechanism for achieving preferential Zn deposition, introducing a unique strategy for fabricating dendrite-free zinc metal batteries.

3.
Acc Chem Res ; 54(2): 379-387, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33371669

RESUMO

ConspectusThe enhanced catalytic activity of Pd-Au catalysts originates from ensemble effects related to the local composition of Pd and Au. The study of Pd-Au planar model catalysts in an ultrahigh vacuum (UHV) environment allows the observation of molecular level catalytic reactions between the Pd-Au surface and target molecules. Recently, there has been progress in understanding the behavior of simple molecules (H2, O2, CO, etc.) employing UHV surface science techniques, the results of which can be applied not only to heterogeneous catalysis but also to electro- and photochemical catalysis.Employing UHV methods in the investigation of Pd-Au model catalysts has shown that single Pd atoms can dissociatively adsorb H2 molecules. The recombinative desorption temperature of H2 varies with Pd ensemble size, which allows the use of H2 as a probe molecule for quantifying surface composition. In particular, H2 desorption from Pd-Au interface sites (or small Pd ensembles) is observed from 150-300 K, which is between the H2 desorption temperature from pure Au (∼110 K) and Pd (∼350 K) surfaces. When the Pd ensembles are large enough to form Pd(111)-like islands, H2 desorption occurs from 300-400 K, as with pure Pd surfaces. The different H2 desorption behavior, which depends on Pd ensemble size, has also been applied to the analysis of dehydrogenation mechanisms for potential liquid storage mediums for H2, namely formic acid and ethanol. In both cases, the Pd-Au interface is the main reaction site for generating H2 from formic acid and ethanol with less overall decomposition of the two molecules (compared to pure Pd).The chemistry behind O2 activation has also been informed through the control of Pd ensembles on a gold model catalyst for acetaldehyde and ethanol oxidation reactions under UHV conditions. O2 molecules molecularly adsorbed on continuous Pd clusters can be dissociated into O adatoms above 180 K. This O2 activation process is improved by coadsorbed H2O molecules. It is also possible to directly (through a precursor mechanism) introduce O adatoms on the Pd-Au surface by exposure to O2 at 300 K. The quantity of dissociatively adsorbed O adatoms is proportional to the Pd coverage. However, the O adatoms are more reactive on a less Pd covered surface, especially at the Pd-Au interface sites, which can initiate CO oxidation at temperatures as low as 140 K. Acetaldehyde molecules can be selectively oxidized to acetic acid on the Pd-Au surface with O adatoms, in which the selectivity toward acetic acid originates from preventing the decarboxylation of acetate species. Moreover, the O adatoms on the Pd-Au surface accelerate ethanol dehydrogenation, which causes the increase in acetaldehyde production. Hydrogen is continuously abstracted from the formed acetaldehyde and remaining ethanol molecules, and they ultimately combine as ethyl acetate on the Pd-Au surface.Using Pd-Au model catalysts under UHV conditions allows the discovery of molecular level mechanistic details regarding the catalytic behavior of H and O adatoms with other molecules. We also expect that these findings will be applicable regarding other chemistry on Pd-Au catalysts.

4.
Acc Chem Res ; 52(1): 248-257, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30596234

RESUMO

Photocatalytic solar fuel production, for example, production of hydrogen via water-splitting, is an effective means of chemical storage of solar energy and provides a potential option for achieving a zero-emissions energy system. Conveniently, hydrogen can be converted back to electricity either via fuel cells or through combustion in gas turbines, or it can be mixed in low concentrations with natural gas or biogas for combustion in existing power plants. The cornerstone of a practical solar fuel production process is a stable, efficient, and scalable photocatalyst (a semiconductor material that accommodates photon absorption, charge carrier generation and transport, and catalytic reactions). Therefore, the quest for suitable photocatalyst materials is an ongoing process. Recently, carbon nitride (CN) has attracted widespread interest as a metal-free, earth-abundant, and highly stable photocatalyst. However, the catalytic efficiency of CN is not satisfactory because of its poor charge transport attributes. There is a direct relation between the photocatalytic efficiency and charge transport because the basic principle of light-promoted overall photodecomposition of water into H2 and O2 molecules (or, generally speaking, photoredox reactions) relies on separation and subsequent transfer of excited-state electron-hole pairs to relative redox couples. However, the excited states last for a very short time, typically nanoseconds to microseconds in liquids, and unless they are separated within this time frame, the excited-state electron-hole pairs undergo recombination with release of the captured light energy as heat or photon emission. To utilize light in a form other than heat or emitted photons by avoiding the recombination of excited-state electron-hole pairs, charged excitons must be scavenged before the absorption of subsequent photons to sustain a multielectron photoredox reaction. Otherwise, the extraction of charges becomes more difficult. This imposes a potential efficiency-limiting factor. An enhancement in water to hydrogen conversion efficiency in CN therefore requires the use of precious-metal cocatalysts (e.g., Pt) and sacrificial electron donor/acceptors to facilitate multielectron/multiproton transfers to overcome the high kinetic barriers. The use of Pt and sacrificial agents is not consistent with the notion of low-cost and sustainable hydrogen production from water. CN must overcome this dependence to stand out as a truly scalable photocatalyst. To make progress, the foremost requirement is to attain an in-depth understanding of the fundamental charge transport phenomena needed for the rational design of CN-based photocatalysts. In this Account, therefore, our aim is to provide a synopsis of current understanding and progress regarding charge-transport-related phenomena (e.g., recombination, trapping, transfer of charge carriers, etc.) and to discuss the effects of charge transport in enhancing the apparent quantum yield of hydrogen production in CN. This understanding is necessary to broaden the scope of CN for other catalytic applications, for example, efficient CO2 reduction to methanol or methane, fixation of nitrogen to ammonia, and use as an active material in solar cells. We also identify research gaps and issues to be addressed for a more clear elucidation of charge-transport-related phenomena in CN. Thus, this Account may inspire new research opportunities for tuning the extrinsic/intrinsic photophysicochemical properties of CN by rational design to attain the most favorable properties for improved catalytic efficiency.

5.
Environ Sci Technol ; 54(19): 12511-12520, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32902265

RESUMO

The electrochemical oxidation of sulfite ions offers encouraging advantages for large-scale hydrogen production, while sulfur dioxide emissions can be effectively used to obtain value-added byproducts. Herein, the performance and stability during sulfite electrolysis under alkaline conditions are evaluated. Nickel foam (NF) substrates were functionalized as the anode and cathode through electrochemical deposition of palladium and chemical oxidation to carry out the sulfite electro-oxidation and hydrogen evolution reactions, respectively. A combined analytical approach in which a robust electrochemical flow cell was coupled to different in situ and ex situ measurements was successfully implemented to monitor the activity and stability during electrolysis. Overall, satisfactory sulfite conversion and hydrogen production efficiencies (>90%) at 10 mA·cm-2 were mainly attributed to the use of NF in three-dimensional electrodes with a large surface area and enhanced mass transfer. Furthermore, stabilization processes associated with electrochemical dissolution and sulfur crossover through the membrane induced specific changes in the chemical and physical properties of the electrodes after electrolysis. This study demonstrates that NF-based electrocatalysts can be incorporated in an efficient electrochemical flow cell system for sulfite electrolysis and hydrogen production, with potential applications at a large scale.


Assuntos
Eletrólise , Níquel , Eletrodos , Hidrogênio , Sulfitos
6.
Phys Chem Chem Phys ; 22(27): 15281-15287, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32617541

RESUMO

The influence of coverage on the diffusion of hydrogen into the subsurface of cobalt was studied using density functional theory (DFT) and temperature programmed desorption (TPD). DFT calculations show that as the hydrogen coverage on Co(0001) increases, the barrier for hydrogen diffusion into the bulk decreases by 20%. Additionally, subsurface hydrogen on a hydrogen covered surface was found to be more stable when compared to a clean cobalt surface. To test these theoretical findings experimentally, excited hydrogen was used in an ultra-high vacuum environment to access higher hydrogen coverages. Our TPD studies showed that at high hydrogen coverages, a sharp low temperature feature appeared, indicating the stabilization of subsurface hydrogen. Further DFT calculations indicate that this sharp low temperature feature results from associative hydrogen desorption from a hydrogen saturated surface with a population of subsurface hydrogen. Microkinetic modelling was used to model the TPD spectra for hydrogen desporption from cobalt with and without subsurface hydrogen, showing reasonable agreement with experiment.

7.
J Am Chem Soc ; 141(45): 18170-18181, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31630513

RESUMO

Recent work on quasi-2D Ruddlesden-Popper phase organolead halide perovskites has shown that they possess many interesting optical and physical properties. Most notably, they are significantly more stable when exposed to moisture when compared to the typical 3D perovskite methylammonium lead iodide (MAPI); direct evidence for the chemical source of this stability remains elusive, however. Here, we present a detailed study of the superior moisture stability of a quasi-2D Ruddlesden-Popper perovskite, n-butylammonium methylammonium lead iodide (nBA-MAPI), compared to that of MAPI, and examine a simple, yet efficient, methodology to improve the stability of MAPI devices through the application of a thin layer of nBA-MAPI to the surface. By employing a variety of analytical techniques (photoluminescence, time-of-flight secondary ion mass spectrometry, cyclic voltammetry, X-ray diffraction) we determine that the improved stability of Ruddlesden-Popper perovskites is a consequence of a unique degradation pathway which produces a passivating surface layer, composed of increasingly stable phases of the 2D perovskite, via disproportionation. Our work establishes that this protective material isolates the bulk of the perovskite from a newly identified hydration layer which is found to accumulate at the C60/perovskite interface of full devices, slowing further hydrolysis reactions that would damage the device. As MAPI devices degrade quickly without any protection, a surface treatment of nBA-MAPI is an efficient way to delay device deterioration by creating an artificial 2D surface layer that similarly inhibits interaction with the hydration layer.

8.
Nano Lett ; 17(12): 8012-8017, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29185764

RESUMO

Nanoarchitecture of bismuth vanadate (BiVO4) photoanodes for effectively increasing light harvesting efficiency and simultaneously achieving high charge separation efficiency is the key to approaching their theoretic performance of solar-driven water splitting. Here, we developed hierarchical BiVO4 nanoporous sphere arrays, which are composed of small nanoparticles and sufficient voids for offering high capability of charge separation. Significantly, multiple light scattering in the sphere arrays and voids along with the large effective thickness of the BiVO4 photoanode induce efficient light harvesting. In addition, attributed to ultrathin two-dimensional Bi2WO6 nanosheets as the precursor, the synergy of various enhancement strategies including WO3/BiVO4 nanojunction formation, W-doping, and oxygen vacancy creation can be directly incorporated into such a unique hierarchical architecture during the one-step synthesis of BiVO4 without complex pre- or post-treatment. The as-obtained photoanode exhibits a water splitting photocurrent of 5.5 mA cm-2 at 1.23 V versus RHE under 1-sun illumination, among the best values reported up-to-date in the field.

9.
Phys Chem Chem Phys ; 19(45): 30578-30589, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29115318

RESUMO

In this study, we have combined ultra-high vacuum (UHV) experiments and density functional theory (DFT) calculations to investigate ethanol (EtOH) dehydrogenation on Pd-Au model catalysts. Using EtOH reactive molecular beam scattering (RMBS), EtOH temperature-programmed desorption (TPD), and DFT calculations, we show how different Pd ensemble sizes on Au(111) can affect the mechanism for EtOH dehydrogenation and H2 production. The Au(111) surface with an initial coverage of 2 monolayers of Pd (2 ML Pd-Au) had the highest H2 yield. However, the 1 ML Pd-Au catalyst showed the highest selectivity and stability, yielding appreciable amounts of only H2 and acetaldehyde. Arrhenius plots of H2 production confirm that the mechanisms for EtOH dehydrogenation differed between 1 and 2 ML Pd-Au, supporting the perceived difference in selectivity between the two surfaces. DFT calculations support this difference in mechanism, showing a dependence of the initial dehydrogenation selectivity of EtOH on the size of Pd ensemble. DFT binding energies and EtOH TPD confirm that EtOH has increasing surface affinity with increasing Pd ensemble size and Pd coverage, indicating that surfaces with more Pd are more likely to induce an EtOH reaction instead of desorb. Our theoretical results show that the synergistic influence of atomic ensemble and electronic effects on Pd/Au(111) can lead to different H2 association energies and EtOH dehydrogenation capacities at different Pd ensembles. These results provide mechanistic insights into ethanol's dehydrogenation interactions with different sites on the Pd-Au surface and can potentially aid in bimetallic catalyst design for applications such as fuel cells.

10.
Acc Chem Res ; 47(3): 750-60, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24635457

RESUMO

Historically, scientists have considered gold an inert catalyst constituent. However, in recent decades, chemists have discovered that nanoscale gold shows exceptional activity for many chemical reactions. They have investigated model gold surfaces in order to obtain fundamental understanding of catalytic properties. In this Account, we present our current understanding of oxidation and hydrogenation reactions on the Au(111) single crystal as a planar representative of gold catalysts, revealing the interesting surface chemistry of gold. We begin by comparing two inverse reactions, alcohol oxidation and aldehyde hydrogenation, on a Au(111) surface. Beyond the expected different chemistry, we observe intriguing similarities since the same surface is employed. First, both molecular oxygen and hydrogen have high barriers to dissociation on Au(111), and frequently chemists study reactions here by using atomic O and H to populate the surfaces. Recombinative desorption features of oxygen and hydrogen are apparent at ∼500 and ∼110 K, lower than other transition metals. These results indicate that oxygen and hydrogen have low desorption activation energies and weakly chemisorb on the surface, likely leading to selective reactions. On the oxygen-precovered Au(111) surface, alcohols are selectively oxidized to aldehydes. Similarly, weakly bound hydrogen atoms on Au(111) also show chemoselective reactivity for hydrogenation of propionaldehyde and acetone. The second similarity is that the gold surface activates self-coupling of alcohol or aldehyde with oxygen or hydrogen, resulting in the formation of esters and ethers, respectively, in alcohol oxidation and aldehyde hydrogenation. During these two reactions, both alkoxy groups and alcohol-like species show up as intermediates, which likely play a key role in the formation of coupling products. In addition, the cross coupling reaction between alcohol and aldehyde occurs on both O- and H-modified surfaces, yielding the production of esters and ethers, respectively. Thus, we can tune the molecular structure of both esters and ethers by selecting the corresponding aldehyde and alcohol for the coupling reaction. These studies indicate that gold is a versatile active catalyst for various reactions, including oxidation and hydrogenation transformations. Despite the very different chemistry for these two reactions, we can establish an intrinsic relationship due to the distinct catalytic properties of gold. It can show activity for selective reactions on both O- and H-covered Au(111) and further induce the coupling reaction between surface reactants and adsorbed O/H to produce esters and ethers. This comparison demonstrates the unique surface chemistry of gold and enhances understanding of its catalytic properties.

11.
Inorg Chem ; 54(4): 2009-16, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25632988

RESUMO

Stabilization of Ta-Ta bonding in an oxide across a shared octahedral-site edge of a Ta2 dimer is not known. Investigation of Li insertion into the trirutile structure of MTa2O6 with M = Mg, Cr, Fe, Co, and Ni indicates that Ta-Ta bonding across the shared octahedral-site edge of the dimer can be stabilized by a reversible electrochemical reduction of Ta(V) to Ta(IV) for M = Cr, Fe, Co, and Ni but not for M = Mg. Chemical reduction of MTa2O6 by n-butyl lithium only reduced NiTa2O6 to any significant extent. With M = Fe, Co, or Ni, electrochemical formation of the Ta-Ta bonds is accompanied by a partial reduction of the Fe(II), Co(II), or Ni(II) to Fe(0), Co(0), or Ni(0). For M = Cr, two Li per formula unit can be inserted reversibly with no displacement of Cr(0). For M = Mg, no Mg(II) are displaced by Li insertion, but a solid-electrolyte interphase (SEI) layer is formed on the oxide with no evidence of Ta-Ta bonding. Stabilization of Ta-Ta bonding across a shared octahedral-site edge in a dimer appears to require significant hybridization of the Ta(V) 5d(0) and M 4s(0) states.

12.
Phys Chem Chem Phys ; 17(32): 20588-96, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26200213

RESUMO

It has been reported that Pd-Au bimetallic catalysts display improved catalytic performance after adequate calcination. In this study, a model catalyst study was conducted to investigate the effects of annealing in oxygen on the surface structures of Pd-Au alloys by comparing the physicochemical properties of Pd/Au(111) surfaces that were annealed in ultrahigh vacuum (UHV) versus in an oxygen ambient. Auger electron spectroscopy (AES) and Basin hopping simulations reveal that the presence of oxygen can inhibit the diffusion of surface Pd atoms into the subsurface of the Au(111) sample. Reflection-absorption infrared spectroscopy using CO as a probe molecule (CO-RAIRS) and King-Wells measurements of O2 uptake suggest that surfaces annealed in an oxygen ambient possess more contiguous Pd sites than surfaces annealed under UHV conditions. The oxygen-annealed Pd/Au(111) surface exhibited a higher activity for CO oxidation in reactive molecular beam scattering (RMBS) experiments. This enhanced activity likely results from the higher oxygen uptake and relatively facile dissociation of oxygen admolecules due to stronger adsorbate-surface interactions as suggested by temperature-programmed desorption (TPD) measurements. These observations provide fundamental insights into the surface phenomena of Pd-Au alloys, which may prove beneficial in the design of future Pd-Au catalysts.

13.
Phys Chem Chem Phys ; 17(6): 4730-8, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25588689

RESUMO

Gold catalysts display high activity and good selectivity for partial oxidation of a number of alcohol species. In this work, we discuss the effects of oxygen adatoms and surface hydroxyls on the selectivity for oxidation of allylic alcohols (allyl alcohol and crotyl alcohol) on gold surfaces. Utilizing temperature programmed desorption (TPD), reactive molecular beam scattering (RMBS), and density functional theory (DFT) techniques, we provide evidence to suggest that the selectivity displayed towards partial oxidation versus combustion pathways is dependent on the type of oxidant species present on the gold surface. TPD and RMBS results suggest that surface hydroxyls promote partial oxidation of allylic alcohols to their corresponding aldehydes with very high selectivity, while oxygen adatoms promote both partial oxidation and combustion pathways. DFT calculations indicate that oxygen adatoms can react with acrolein to promote the formation of a bidentate surface intermediate, similar to structures that have been shown to decompose to generate combustion products over other transition metal surfaces. Surface hydroxyls do not readily promote such a process. Our results help explain phenomena observed in previous studies and may prove useful in the design of future catalysts for partial oxidation of alcohols.

14.
J Am Chem Soc ; 136(31): 11070-8, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25019609

RESUMO

Pd-Au catalysts have shown exceptional performance for selective hydrogen production via HCOOH decomposition, a promising alternative to solve issues associated with hydrogen storage and distribution. In this study, we utilized temperature-programmed desorption (TPD) and reactive molecular beam scattering (RMBS) in an attempt to unravel the factors governing the catalytic properties of Pd-Au bimetallic surfaces for HCOOH decomposition. Our results show that Pd atoms at the Pd-Au surface are responsible for activating HCOOH molecules; however, the selectivity of the reaction is dictated by the identity of the surface metal atoms adjacent to the Pd atoms. Pd atoms that reside at Pd-Au interface sites tend to favor dehydrogenation of HCOOH, whereas Pd atoms in Pd(111)-like sites, which lack neighboring Au atoms, favor dehydration of HCOOH. These observations suggest that the reactivity and selectivity of HCOOH decomposition on Pd-Au catalysts can be tailored by controlling the arrangement of surface Pd and Au atoms. The findings in this study may prove informative for rational design of Pd-Au catalysts for associated reactions including selective HCOOH decomposition for hydrogen production and electro-oxidation of HCOOH in the direct formic acid fuel cell.

15.
J Am Chem Soc ; 136(7): 2843-50, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24475949

RESUMO

Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity comparable to that of another OER cocatalyst, Co-borate (Co-Bi), in 1 M Na2CO3, reaching 10 mA/cm(2) at an overpotential of ∼550 mV for 10 nm thick films. Additionally, the a-FeOOH thin films absorb less than 3% of the solar photons (AM1.5G) with energy greater than 1.9 eV, are homogeneous over large areas, and act as a protective layer separating the solution from the solar absorber. The utility of a-FeOOH in a realistic system is tested by depositing on amorphous Si triple junction solar cells with a photovoltaic efficiency of 6.8%. The resulting a-FeOOH/a-Si devices achieve a total water splitting efficiency of 4.3% at 0 V vs RHE in a three-electrode configuration and show no decrease in efficiency over the course of 4 h.

16.
J Am Chem Soc ; 136(17): 6489-98, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24702503

RESUMO

Partial oxidation of alcohols is a topic of great interest in the field of gold catalysis. In this work, we provide evidence that the partial oxidation of allyl alcohol to its corresponding aldehyde, acrolein, over oxygen-precovered gold surfaces occurs via multiple reaction pathways. Utilizing temperature-programmed desorption (TPD) with isotopically labeled water and oxygen species, reactive molecular beam scattering, and density functional theory (DFT) calculations, we demonstrate that the reaction mechanism for allyl alcohol oxidation is influenced by the relative proportions of atomic oxygen and hydroxyl species on the gold surface. Both atomic oxygen and hydroxyl species are shown to be active for allyl alcohol oxidation, but each displays a different pathway of oxidation, as indicated by TPD measurements and DFT calculations. The hydroxyl hydrogen of allyl alcohol is readily abstracted by either oxygen adatoms or adsorbed hydroxyl species on the gold surface to generate a surface-bound allyloxide intermediate, which then undergoes α-dehydrogenation via interaction with an oxygen adatom or surface hydroxyl species to generate acrolein. Mediation of a second allyloxide with the hydroxyl species lowers the activation barrier for the α-dehydrogenation process. A third pathway exists in which two hydroxyl species recombine to generate water and an oxygen adatom, which subsequently dehydrogenates allyloxide. This work may aid in the understanding of oxidative catalysis over gold and the effect of water therein.

17.
J Am Chem Soc ; 136(4): 1535-44, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24393053

RESUMO

p-Si/W2C photocathodes are synthesized by evaporating tungsten metal in an ambient of ethylene gas to form tungsten semicarbide (W2C) thin films on top of p-type silicon (p-Si) substrates. As deposited the thin films contain crystalline W2C with a bulk W:C atomic ratio of approximately 2:1. The W2C films demonstrate catalytic activity for the hydrogen evolution reaction (HER), and p-Si/W2C photocathodes produce cathodic photocurrent at potentials more positive than 0.0 V vs RHE while bare p-Si photocathodes do not. The W2C films are an effective support for Pt nanoparticles allowing for a considerable reduction in Pt loading. p-Si/W2C/Pt photocathodes with Pt nanoparticles achieve photocurrent onset potentials and limiting photocurrent densities that are comparable to p-Si/Pt photocathodes with Pt loading nine times higher. This makes W2C an earth abundant alternative to pure Pt for use as an electrocatalyst on photocathodes for the HER.

18.
Chem Soc Rev ; 42(12): 5002-13, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23446819

RESUMO

Supported gold nanoparticles have recently been shown to possess intriguing catalytic activity for hydrogenation reactions, particularly for selective hydrogenation reactions. However, fundamental studies that can provide insight into the reaction mechanisms responsible for this activity have been largely lacking. In this tutorial review, we highlight several recent model experiments and theoretical calculations on a well-structured gold surface that provide some insights. In addition to the behavior of hydrogen on a model gold surface, we review the reactivity of hydrogen on a model gold surface in regards to NO2 reduction, chemoselective C=O bond hydrogenation, ether formation, and O-H bond dissociation in water and alcohols. Those studies indicate that atomic hydrogen has a weak interaction with gold surfaces which likely plays a key role in the unique hydrogenative chemistry of classical gold catalysts.

19.
Adv Mater ; 36(5): e2306275, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37669465

RESUMO

Applying a design of experiments methodology to the molten salt synthesis of nanoporous carbons enables inverse design and optimization of nitrogen (N)-rich carbon adsorbents with excellent CO2 /N2 selectivity and appreciable CO2 capacity for carbon capture via swing adsorption from dilute gas mixtures such as natural gas combined cycle flue gas. This data-driven study reveals fundamental structure-function relationships between the synthesis conditions, physicochemical properties, and achievable selective adsorption performance of N-rich nanoporous carbons derived from molten salt synthesis for CO2 capture. Taking advantage of size-sieving separation of CO2 (3.30 Å) from N2 (3.64 Å) within the turbostratic nanostructure of these N-rich carbons, while limiting deleterious N2 adsorption in a weaker adsorption site that harms selectivity, enables a large CO2 capacity (0.73 mmol g-1 at 30.4 Torr and 30 °C) with noteworthy concurrent CO2 /N2 selectivity as predicted by the ideal adsorbed solution theory (SIAST = 246) with an adsorbed phase purity of 91% from a simulated gas stream containing only 4% CO2 . Optimized N-rich porous carbons, with good physicochemical stability, low cost, and moderate regeneration energy, can achieve performance for selective CO2 adsorption that competes with other classes of advanced porous materials such as chemisorbing zeolites and functionalized metal-organic frameworks.

20.
Adv Mater ; 36(9): e2305645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37670536

RESUMO

The discovery of liquid battery electrolytes that facilitate the formation of stable solid electrolyte interphases (SEIs) to mitigate dendrite formation is imperative to enable lithium anodes in next-generation energy-dense batteries. Compared to traditional electrolyte solvents, tetrahydrofuran (THF)-based electrolyte systems have demonstrated great success in enabling high-stability lithium anodes by encouraging the decomposition of anions (instead of organic solvent) and thus generating inorganic-rich SEIs. Herein, by employing a variety of different lithium salts (i.e., LiPF6, LiTFSI, LiFSI, and LiDFOB), it is demonstrated that electrolyte anions modulate the inorganic composition and resulting properties of the SEI. Through novel analytical time-of-flight secondary-ion mass spectrometry methods, such as hierarchical clustering of depth profiles and compositional analysis using integrated yields, the chemical composition and morphology of the SEIs generated from each electrolyte system are examined. Notably, the LiDFOB electrolyte provides an exceptionally stable system to enable lithium anodes, delivering >1500 cycles at a current density of 0.5 mAh g-1 and a capacity of 0.5 mAh g-1 in symmetrical cells. Furthermore, Li//LFP cells using this electrolyte demonstrate high-rate, reversible lithium storage, supplying 139 mAh g(LFP) -1 at C/2 (≈0.991 mAh cm-2 , @ 0.61 mA cm-2 ) with 87.5% capacity retention over 300 cycles (average Coulombic efficiency >99.86%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA