Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 191: 110244, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004946

RESUMO

The purpose of this research was to examine the influence of hydrothermally treated coal gangue (HTCG) with and without biochar (BC) on the leaching, bioavailability, and redistribution of chemical fractions of heavy metals (HMs) in copper mine tailing (Cu-MT). An increase in pH, water holding capacity (WHC) and soil organic carbon (SOC) were observed due to the addition of BC in combination with raw coal gangue (RCG) and HTCG. A high Cu and other HMs concentration in pore water (PW) and amended Cu-MT were reduced by the combination of BC with RCG and/or HTCG, whereas individual application of RCG slightly increased the Cu, Cd, and Zn leaching and bioavailability, compared to the unamended Cu-MT. Sequential extractions results showed a reduction in the exchangeable fraction of Cu, Cd, Pb, and Zn and elevation in the residual fraction following the addition of BC-2% and BC-HTCG. However, individual application of RCG slightly increased the Cu, Cd, and Zn exchangeable fractions assessed by chemical extraction method. Rapeseed was grown for the following 45 days during which physiological parameters, metal uptake transfer rate (TR), bioconcentration factor (BCF), and translocation factor (TF) were measured after harvesting. In the case of plant biomass, no significant difference between applied amendments was observed for the fresh biomass (FBM) and dry biomass (DBM) of shoots and roots of rapeseed. However, BC-2% and BC-HTCG presented the lowest HMs uptake, TR, BCF (BCFroot and BCFshoot), and TF for Cu, Cd, Cr, Ni, Pb, and Zn in rapeseed among the other amendments compared to the unamended Cu-MT. Overall, these findings are indicative that using biochar in combination with RCG and/or HTCG led to a larger reduction in HMs leaching and bioavailability, due to their higher sorption capacity and could be a suitable remediation strategy for heavy metals in a Cu-MT.


Assuntos
Brassica napus/efeitos dos fármacos , Carvão Vegetal/farmacologia , Carvão Mineral/análise , Metais Pesados/metabolismo , Mineração , Poluentes do Solo/metabolismo , Adsorção , Disponibilidade Biológica , Brassica napus/metabolismo , Carvão Vegetal/química , Cobre/análise , Cobre/metabolismo , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise
2.
J Environ Sci (China) ; 78: 29-41, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30665648

RESUMO

A series of new biochar-supported composite based on the combination of biochar and metallic nanoparticles (NPs) were produced through single-step pyrolysis of FeCl3-Ti(OBu)4 laden agar biomass under NH3 environment. The physiochemical properties of composites were characterized thoroughly. It has found that heating temperature and N-doping through NH3-ambiance pyrolysis significantly influence the visible-light sensitivity and bandgap energy of composites. The catalytic activities of composites were measured by degradation of Methylene Blue (MB) in the presence or absence of H2O2 and visible-light irradiation. Our best catalyst (N-TiO2-Fe3O4-biochar) exhibits rapid and high MB removal competency (99.99%) via synergism of adsorption, photodegradation, and Fenton-like reaction. Continuous production of O2- and OH radicles performs MB degradation and mineralization, confirmed by scavenging experiments and degradation product analysis. The local trap state Ti3+, Fe3O4, and N-carbon of the catalyst acted as active sites. It has suggested that the Ti3+ and N-doped dense carbon layer improve charge separation and shuttle that prolonged photo-Fenton like reaction. Moreover, the catalyst is highly stable, collectible, and recyclable up to 5 cycles with high MB degradation efficiency. This work provides a new insight into the synthesis of highly visible-light sensitized biochar-supported photocatalyst through NH3-ambiance pyrolysis of NPs-laden biomass.


Assuntos
Amônia/química , Carvão Vegetal/química , Azul de Metileno/química , Modelos Químicos , Pirólise , Poluentes Químicos da Água/química , Adsorção , Catálise , Peróxido de Hidrogênio/química , Titânio/química
3.
Ecotoxicol Environ Saf ; 149: 291-306, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29268101

RESUMO

Selenium (Se) is a trace mineral and an essential nutrient of vital importance to human health in trace amounts. It acts as an antioxidant in both humans and animals, immunomodulator and also involved in the control of specific endocrine pathways. The aim of this work is to provide a brief knowledge on selenium content in daily used various foodstuffs, nutritional requirement and its various health consequences. In general, fruits and vegetables contain low content of selenium, with some exceptions. Selenium level in meat, eggs, poultry and seafood is usually high. For most countries, cereals, legumes, and derivatives are the major donors to the dietary selenium intake. Low level of selenium has been related with higher mortality risk, dysfunction of an immune system, and mental failure. Selenium supplementation or higher selenium content has antiviral outcomes and is necessary for effective reproduction of male and female, also decreases the threat of chronic disease (autoimmune thyroid). Generally, some advantages of higher content of selenium have been shown in various potential studies regarding lung, colorectal, prostate and bladder cancers risk, nevertheless results depicted from different trials have been diverse, which perhaps indicates the evidence that supplementation will merely grant advantage if the intakes of a nutrient is deficient. In conclusion, the over-all people should be advised against the usage of Se supplements for prevention of cardiovascular, hepatopathies, or cancer diseases, as advantages of Se supplements are still ambiguous, and their haphazard usage could result in an increased Se toxicity risk. The associations among Se intake/status and health, or disease risk, are complicated and need exposition to notify medical practice, to improve dietary recommendations, and to develop adequate communal health guidelines.


Assuntos
Antioxidantes/análise , Alimentos/normas , Necessidades Nutricionais , Reprodução/efeitos dos fármacos , Selênio/análise , Oligoelementos/análise , Animais , Suplementos Nutricionais , Feminino , Humanos , Masculino , Risco
4.
Environ Sci Pollut Res Int ; 30(32): 78279-78293, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269518

RESUMO

An inexpensive and environmentally friendly composite synthesized from rice husk, impregnated with montmorillonite and activated by carbon dioxide, was investigated for the removal of azithromycin from an aqueous solution. Various techniques were used to characterize adsorbents in detail. The sorption process was primarily regulated by the solution pH, pollutant concentration, contact duration, adsorbent dose, and solution temperature. The equilibrium data were best analyzed using the nonlinear Langmuir and Sips (R2 > 0.97) isotherms, which revealed that adsorption occurs in a homogenous manner. The adsorption capacity of pristine biochar and carbon dioxide activated biochar-montmorillonite composite was 33.4 mg g-1 and 44.73 mg g-1, respectively. Kinetic studies identified that the experimental data obeyed the pseudo-second-order and Elovich models (R2 > 0.98) indicating the chemisorption nature of adsorbents. The thermodynamic parameters determined the endothermic and spontaneous nature of the reaction. The ion exchange, π-π electron-donor-acceptor (EDA) interactions, hydrogen-bonding, and electrostatic interactions were the plausible mechanisms responsible for the adsorption process. This study revealed that a carbon dioxide activated biochar-montmorillonite composite may be used as an effective, sustainable, and economical adsorbent for the removal of azithromycin from polluted water.


Assuntos
Bentonita , Poluentes Químicos da Água , Azitromicina , Cinética , Dióxido de Carbono , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Termodinâmica , Água , Adsorção , Concentração de Íons de Hidrogênio
5.
Environ Sci Pollut Res Int ; 29(47): 71810-71825, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35604595

RESUMO

Organic and inorganic mixtures can be developed as immobilizing agents that could reduce heavy metal accumulation in crops and contribute to food safety. Here, inorganic materials (lime, L; zeolite, Z; and sepiolite, S) and organic materials (biochar, B, and compost, C) were selectively mixed to produce six composite soil amendments (LZBC, LSBC, LZC, LZB, LSC, and LSB). Given the fact that LZBC showed the best performance in decreasing soil Cd availability in the incubation experiment, it was further applied in the field condition with 14 vegetables as the test crops to investigate its effects on crop safety production in polluted greenhouse. The results showed that LZBC addition elevated rhizosphere soil pH by 0.1-2.0 units and reduced soil Cd availability by 1.85-37.99%. Both the biomass and the yields of edible parts of all vegetables were improved by LZBC addition. However, LZBC addition differently affected Cd accumulation in edible parts of the experimental vegetables, with the observation that Cd contents were significantly reduced in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., but increased in the three species of Lactuca sativa. Further health risk assessment showed that LZBC application significantly decreased daily intake of metal (DIM), health risk index (HRI), and target hazard quotient (THQ) for Cd in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., whereas increased all the indexes in Lactuca sativa. Our results showed that the effect of a composite amendment on Cd accumulation in different vegetables could be divergent and species-dependent, which suggested that it is essential to conduct a pre-experiment to verify applicable species for a specific soil amendment designed for heavy metal immobilization.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Zeolitas , Cádmio/análise , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise , Verduras
6.
Sci Rep ; 12(1): 15317, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097148

RESUMO

Soil organic matter (SOM) is of vital importance to soil health, and also plays a crucial role in the quality of the crops such as tobacco. However, the link between tobacco quality and SOM chemical compositions is still not well understood. To fill the information gap, we analyzed the quality of tobacco leaves and the corresponding SOM molecular compositions by electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), that were collected from six different sites in Bijie, Guizhou Province, China. The tobacco quality variedin six sites based on their chemical compositions. SOM compounds had a remarked impact on the quality of tobacco leaves and a distinct difference in SOM composition between low-quality and high-quality tobacco leaves was observed as well. Specifically, 105 common molecular formulas were detected in three SOM compounds of high-quality tobacco, which were more than those in low-quality samples. Although amino sugar, proteins, lipids, tannins, and carbohydrates had a collective influence on the chemical composition of tobacco leaves, the effect contributed by amino sugar and tannins was more prominent. In summary, fully understanding the association between tobacco chemical composition and SOM compounds can provide new insight into the regulation of tobacco quality and the sustainable development of agriculture.


Assuntos
Nicotiana , Solo , Agricultura , Amino Açúcares , Compostos Orgânicos/análise , Solo/química , Taninos
7.
Environ Pollut ; 309: 119768, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841993

RESUMO

As one of the most common ways to get rid of municipal waste, landfill leachate, waste with complicated compositions and high levels of contaminants, has become a significant threat to the world's environment. Here, the impact of sewage sludge (SS) and derived-biochar (SSB) amendments on the immobilization and potential mobility of heavy metals in a contaminated soil-plant system was investigated. The sequential fractionation findings showed that using SS-2%, SSB-2%, and SSBC-1% reduced the potential mobility of heavy metals while increasing the residual fraction in polluted soils. The translocation and bioconcentration factors showed that heavy metals were slightly transferred into shoots from roots and lowered accumulation in roots from contaminated soils. Fourier transform infrared (FTIR) and X-ray photoelectron spectrum (XPS) comprehensive characterization results indicated the significant role of applied amendments for heavy metals transformation from the exchangeable-soluble fractions to the least available form by lowering their mobility to confirm the adsorption-based complexes, which results in the surface adsorption of heavy metals with functional groups. The electron paramagnetic resonance (EPR) results indicated the dominance of reactive oxygen species (ROS) in the intracellular formation of hydroxyl radicals (•OH) in maize plant roots and shoots. ROS (•OH) generation plays a critical influence in the interaction between the physiological processes of plants and heavy metals. Moreover, all the amendments increased maize growth and biomass production. Our study suggests that alone and combined application of SS and SSB have great potential to remediate heavy metals contaminated soil for environmental sustainability.


Assuntos
Metais Pesados , Poluentes do Solo , Carvão Vegetal , Metais Pesados/análise , Plantas , Espécies Reativas de Oxigênio , Esgotos , Solo , Poluentes do Solo/análise , Zea mays
8.
J Hazard Mater ; 416: 126127, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492921

RESUMO

The inefficient and incomplete combustion of solid fuel (SF) is associated with high levels of indoor air pollutants leading to 3.55 million deaths annually. The risk is higher in women and children, due to their higher exposure duration and unique physical properties. The current article aims to provide a critical overview regarding the use of solid fuel, its associated pollutants, their toxicity mechanisms and, most importantly the associated health impacts, especially in women and children. Pollutants associated with SF mostly include polycyclic aromatic hydrocarbons, particulate matter, nitrous oxide, carbon monoxide and sulfur dioxide, and their concentrations are two- to threefold higher in indoor environments. These pollutants can lead to a variety of health risks by inducing different toxicity mechanisms, such as oxidative stress, DNA methylation, and gene activation. Exposed children have an increased prevalence of low birth weight, acute lower respiratory tract infections, anemia and premature mortality. On the other hand, lung cancer, chronic obstructive pulmonary disease and cardiovascular diseases are the major causes of disability and premature death in women. Indoor air pollution resulting from SF combustion is a major public health threat globally. To reduce the risks, it is important to identify future research gaps and implement effective interventions and policies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Monóxido de Carbono , Criança , Culinária , Feminino , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise
9.
Sci Total Environ ; 779: 146536, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030257

RESUMO

This study was designed to examine the combined effect of bamboo-biochar (BC) and water-washed lignite (LGT) at copper mine tailings (CuMT) sites on the concentration of Cu and other metals in pore water (PW), their bioavailability, and change in geochemical speciation. Rapeseed (first cropping-season) and wheat (second cropping-season) were grown for 40-days each and the influence of applied-amendments on both cropping seasons was observed and compared. A significant increase in pH, water holding capacity (WHC), and soil organic carbon (SOC) was observed after the applied amendments in second cropping-seasons. The BC-LGT significantly reduced the concentration of Cu in PW after second cropping seasons; however, the concentration of Pb and Zn were increased with the individual application of biochar and LGT, respectively. BC-LGT and BC-2% significantly reduced the bioavailability of Cu and other HMs in both cropping seasons. The treated-CuMT was subjected to spectroscopic investigation through X-ray photoelectron spectroscopy (XPS), Fourier transform Infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD). The results showed that Cu sorption mainly involved the coordination with hydroxyl and carboxyl functional groups, as well as the co-precipitation or complexation on mineral surfaces, which vary with the applied amendment and bulk amount of Mg, Mn, and Fe released during sorption-process. The co-application of BC-LGT exerted significant effectiveness in immobilizing Cu and other HMs in CuMT. The outcomes of the study indicated that co-application of BC-LGT is an efficacious combination of organic and inorganic materials for Cu adsorption which may provide some new information for the sustainable remediation of copper mine tailing.


Assuntos
Metais Pesados , Poluentes do Solo , Carbono , Carvão Vegetal , Carvão Mineral , Cobre/análise , Metais Pesados/análise , Solo , Poluentes do Solo/análise
10.
Sci Total Environ ; 791: 148422, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412398

RESUMO

The intensive use and wide-ranging application of plastic- and plastic-derived products have resulted in alarming levels of plastic pollution in different environmental compartments worldwide. As a result of various biogeochemical mechanisms, this plastic litter is converted into small, ubiquitous and persistent fragments called microplastics (<5 mm), which are of significant and increasing concern to the scientific community. Microplastics have spread across the globe and now exist in virtually all environmental compartments (the soil, atmosphere, and water). Although these compartments are often considered to be independent environments, in reality, they are very closely linked. Ample research has been done on microplastics, but there are still questions and knowledge gaps regarding the emission, occurrence, distribution, detection, environmental fate and transport of MPs in different environmental compartments. The current article is intended to provide a systematic overview of MP emissions, pollution conditions, sampling and analytical approaches, transport, fates and transformation mechanisms in different environmental compartments. It also identifies research gaps and future research directions and perspectives.


Assuntos
Microplásticos , Plásticos , Monitoramento Ambiental , Poluição Ambiental/análise , Solo
11.
Environ Int ; 138: 105646, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179325

RESUMO

The ever increasing production and use of nano-enabled commercial products release the massive amount of engineered nanoparticles (ENPs) in the environment. An increasing number of recent studies have shown the toxic effects of ENPs on different organisms, raising concerns over the nano-pollutants behavior and fate in the various environmental compartments. After the release of ENPs in the environment, ENPs interact with various components of the environment and undergoes dynamic transformation processes. This review focus on ENPs transformations in the various environmental compartments. The transformation processes of ENPs are interrelated to multiple environmental aspects. Physical, chemical and biological processes such as the homo- or hetero-agglomeration, dissolution/sedimentation, adsorption, oxidation, reduction, sulfidation, photochemically and biologically mediated reactions mainly occur in the environment consequently changes the mobility and bioavailability of ENPs. Physico-chemical characteristics of ENPs (particle size, surface area, zeta potential/surface charge, colloidal stability, and core-shell composition) and environmental conditions (pH, ionic strength, organic and inorganic colloids, temperature, etc.) are the most important parameters which regulated the ENPs environmental transformations. Meanwhile, in the environment, organisms encountered multiple transformed ENPs rather than the pristine nanomaterials due to their interactions with various environmental materials and other pollutants. Thus it is the utmost importance to study the behavior of transformed ENPs to understand their environmental fate, bioavailability, and mode of toxicity.


Assuntos
Poluentes Ambientais , Nanopartículas , Nanoestruturas , Poluentes Ambientais/análise , Nanopartículas/toxicidade , Tamanho da Partícula
12.
Environ Pollut ; 244: 809-817, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30390454

RESUMO

The current study investigates the concentration of eleven trace elements in biomaterials including hair (85) and nails (85) along with seventy five (75) road dust samples collected from a healthy population of habitable urban-industrial areas of Hefei, China. The samples were acid digested and analyzed using ICP-MS for trace elements content. The mean concentration of Elements followed descending order of Zn > Mg > Fe > Cr > Al > Sn > Sr > Ti > Cu > As > Cd and Mg > Zn > Fe > Cr > Al > Sn > Ti > Cu > Sr > As > Cd in hair and nails, respectively. Overall, the concentration of elements was found to be high in female subject as compared to male. The concentration of trace elements in hair and nail exceeded the maximum permissible limits in most cases. The corresponding mean values from dust samples were fairly high as compared to background values of trace elements. Middle age groups (21-30 years and 31-40 years) were observed to be the most vulnerable there-by posing a high health risk, as the concentration of trace elements was significantly high in these groups except for Al, which was detected high in age < 20 in case of both male and female. A significantly high correlation was found between trace elements in biomaterials and those detected in dust samples. In hair samples, a significantly positive correlation was noticed for As with Mg, Zn, Sn and Fe, Sn/Mg and Mg/Ti. In the case of nails, a significant correlation was observed for elements like Al, Mg, Zn, Cr, and Cu. The Cluster and principal component analysis revealed industrial and vehicular emissions as main sources for trace elements exposure in humans.


Assuntos
Poeira/análise , Exposição Ambiental , Monitoramento Ambiental/métodos , Cabelo/química , Metais/análise , Unhas/química , Oligoelementos/análise , Emissões de Veículos/análise , Adulto , China , Feminino , Indicadores Básicos de Saúde , Humanos , Indústrias , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Risco , Análise Espectral , Adulto Jovem
13.
Chemosphere ; 181: 111-121, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28433929

RESUMO

This study aims to investigate the pollution characteristics of road dust and their associated health risks of potentially toxic elements (PTEs) to humans using array-based risk assessment models described by United States Environmental Protection Agency (USEPA) in a metropolitan area of Hefei, China. Geoaccumulation index (Igeo) was used to describe pollution characteristics of roadside dust in urban, periurban and industrial areas. Results indicate that industrial roadside dust was contaminated with Fe, Ni, Cu, Ti, V, Pb, Ba, Sb, Cr, Sn, Pb, As and Ga showing Igeo value (log2 (x)) between Igeo class 3 to 4. In other hand, urban roadside dust contamination with Cu, Zn, Sb and Ga ranged between Igeo classes 2 to 3 and with As and Pb ranged between Igeo classes 4 to 5. Furthermore, health risk assessment revealed negligible non-cancerous health hazard in all sites including urban, periurban and industrial areas. The hazard quotient (HQ) and hazard Index (HI) values for all exposure routes (ingestion, inhalation, and dermal contact) were <1 except for chromium with HI value of 1.06E+00 in industrial areas. Moreover, the most prominent exposure route was ingestion (HQing) and the non-carcinogenic health risks were found to be high in case of children compared to the adults. The cancer risk from As, Co, Cr, Ni, and Pb was found to be in safe levels as the RI (carcinogenic risks) values were below the limits for carcinogens (1.00E-6 to 1.00E-4).


Assuntos
Poeira/análise , Poluição Ambiental/análise , Metais Pesados/análise , Adulto , Criança , China , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Humanos , Desenvolvimento Industrial , Medição de Risco , Estados Unidos , United States Environmental Protection Agency , Urbanização
14.
Environ Sci Pollut Res Int ; 24(34): 26646-26657, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28956229

RESUMO

Potentially toxic elements (PTEs) pollution is the fastest growing concern around the entire globe especially in developing countries. Rapid industrialization and urbanization are the dominant sources of anthropogenic soil-food chain contamination with PTEs. The intent of current study was to investigate the interactive levels of Cu, Fe, Mn, Ni, Pb, and Zn in soil and their accumulation in wheat (Triticum aestivum L.) samples collected from 96 sites including industrial, urban, and peri-urban areas of a leading multi-industrialized center (Faisalabad) of Pakistan. According to results obtained from present study, non-carcinogenic (HQ) and life-time carcinogenic risks (CR) of the PTEs to the local inhabitants were estimated following the risk assessment modals proposed by the US-EPA. With respect to estimated HQ for chronic non-carcinogenic risk of Mn, Ni, and Pb, higher potential hazards were observed as compared to Cu, Fe, and Zn. Meanwhile, the carcinogenic risk of Ni marginally exceeded the limit described by US-EPA for adults. Overall, the health risks of PTEs with the consumption of wheat were lower than the limits described by US-EPA except for Ni. However, continuous consumption of this PTEs contaminated food may result the potential buildup of poisonousness and various disorders in humans. Therefore, long-term monitoring and gastrointestinal bio-accessibility studies are requisite for the safety of humans under such conditions.


Assuntos
Monitoramento Ambiental/métodos , Contaminação de Alimentos/análise , Metais Pesados/análise , Poluentes do Solo/análise , Triticum/química , Adulto , Grão Comestível/química , Humanos , Desenvolvimento Industrial , Paquistão , Brotos de Planta/química , Medição de Risco , Solo/química , Urbanização
15.
Environ Sci Pollut Res Int ; 23(22): 22443-22453, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27549232

RESUMO

A verity of human activities i.e. urbanization and industrialization have been resulted serious environmental contaminations by heavy metals in all over the world. The settlement of populations in urban and nearby industrial areas for economic development has significant share in their exposure to these metallic contaminants. Depending on the nature and type of the pollutants, targeted urban-industrial environments can have harmful and chronic health risk impacts on exposed local inhabitants and may require detoxification, healing and remedial therapy. Consequently, environmental monitoring as well as human health risk assessments of urban environments under industrial influence are key dominant features. We believe this work will provide new insights into the studies of metals exposure and associated health risks in emerging industrials cities of developing countries. Present study aimed to study the bioavailability of metals, quantify the changeability in soil and vegetable metal concentrations and estimation of human health risks via dietary exposure, focusing on urban-industrial environment. Soil and vegetable samples were collected in six random sites within the urban, periurban and industrial areas and analyzed for metal concentrations. In addition, risk assessment model proposed by US-EPA was employed to estimate the potential health risk of heavy metals via dietary intake. Results indicated that the heavy metal concentrations were noteworthy in periurban and urban-industrial areas. However, contamination levels varied with the type of vegetable, and the point source pollution such as traffic, urban wastes and industrial effluent. According to the estimated THQ and HI values for non-carcinogenic risk, little or no negative impact of heavy metals was observed on local inhabitants. However, the concentrations of Cr, Cd, Pb and Ni were nearly closed to the permissible limits described by US-EPA in urban-industrial areas. Conclusively, some efficient remedial strategies should be focus to overcome the increasing levels of Cr, Cd, Pb and Ni in this study area to protect the health of local inhabitants.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/farmacocinética , Contaminação de Alimentos , Metais Pesados/farmacocinética , Poluentes do Solo/farmacocinética , Verduras/química , Disponibilidade Biológica , Cidades , Dieta , Poluentes Ambientais/química , Poluição Ambiental , Humanos , Indústrias , Medição de Risco , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA