Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
FASEB J ; 38(2): e23411, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243766

RESUMO

Autism spectrum disorder is discussed in the context of altered neural oscillations and imbalanced cortical excitation-inhibition of cortical origin. We studied here whether developmental changes in peripheral auditory processing, while preserving basic hearing function, lead to altered cortical oscillations. Local field potentials (LFPs) were recorded from auditory, visual, and prefrontal cortices and the hippocampus of BdnfPax2 KO mice. These mice develop an autism-like behavioral phenotype through deletion of BDNF in Pax2+ interneuron precursors, affecting lower brainstem functions, but not frontal brain regions directly. Evoked LFP responses to behaviorally relevant auditory stimuli were weaker in the auditory cortex of BdnfPax2 KOs, connected to maturation deficits of high-spontaneous rate auditory nerve fibers. This was correlated with enhanced spontaneous and induced LFP power, excitation-inhibition imbalance, and dendritic spine immaturity, mirroring autistic phenotypes. Thus, impairments in peripheral high-spontaneous rate fibers alter spike synchrony and subsequently cortical processing relevant for normal communication and behavior.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Audição , Fenótipo
2.
Mol Psychiatry ; 29(4): 992-1004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216727

RESUMO

Neuroinflammation is a hallmark of Alzheimer's disease (AD) and both positive and negative associations of individual inflammation-related markers with brain structure and cognitive function have been described. We aimed to identify inflammatory signatures of CSF immune-related markers that relate to changes of brain structure and cognition across the clinical spectrum ranging from normal aging to AD. A panel of 16 inflammatory markers, Aß42/40 and p-tau181 were measured in CSF at baseline in the DZNE DELCODE cohort (n = 295); a longitudinal observational study focusing on at-risk stages of AD. Volumetric maps of gray and white matter (GM/WM; n = 261) and white matter hyperintensities (WMHs, n = 249) were derived from baseline MRIs. Cognitive decline (n = 204) and the rate of change in GM volume was measured in subjects with at least 3 visits (n = 175). A principal component analysis on the CSF markers revealed four inflammatory components (PCs). Of these, the first component PC1 (highly loading on sTyro3, sAXL, sTREM2, YKL-40, and C1q) was associated with older age and higher p-tau levels, but with less pathological Aß when controlling for p-tau. PC2 (highly loading on CRP, IL-18, complement factor F/H and C4) was related to male gender, higher body mass index and greater vascular risk. PC1 levels, adjusted for AD markers, were related to higher GM and WM volumes, less WMHs, better baseline memory, and to slower atrophy rates in AD-related areas and less cognitive decline. In contrast, PC2 related to less GM and WM volumes and worse memory at baseline. Similar inflammatory signatures and associations were identified in the independent F.ACE cohort. Our data suggest that there are beneficial and detrimental signatures of inflammatory CSF biomarkers. While higher levels of TAM receptors (sTyro/sAXL) or sTREM2 might reflect a protective glia response to degeneration related to phagocytic clearance, other markers might rather reflect proinflammatory states that have detrimental impact on brain integrity.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Encéfalo , Cognição , Disfunção Cognitiva , Inflamação , Imageamento por Ressonância Magnética , Substância Branca , Proteínas tau , Humanos , Masculino , Feminino , Biomarcadores/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Pessoa de Meia-Idade , Encéfalo/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Cognição/fisiologia , Inflamação/líquido cefalorraquidiano , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/líquido cefalorraquidiano , Substância Branca/patologia , Proteínas tau/líquido cefalorraquidiano , Estudos Longitudinais , Substância Cinzenta/patologia , Estudos de Coortes
3.
Brain ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743817

RESUMO

Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional magnetic resonance imaging (fMRI) activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive aging. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analyzed subsequent memory fMRI data from individuals with SCD, MCI, and AD dementia as well as healthy controls (HC) and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-center DELCODE study (N = 468). Based on the individual participants' whole-brain fMRI novelty and subsequent memory responses, we calculated the FADE and SAME scores and assessed their association with AD risk stage, neuropsychological test scores, CSF amyloid positivity, and ApoE genotype. Memory-based FADE and SAME scores showed a considerably larger deviation from a reference sample of young adults in the MCI and AD dementia groups compared to HC, SCD and AD-rel. In addition, novelty-based scores significantly differed between the MCI and AD dementia groups. Across the entire sample, single-value scores correlated with neuropsychological test performance. The novelty-based SAME score further differed between Aß-positive and Aß-negative individuals in SCD and AD-rel, and between ApoE ε4 carriers and non-carriers in AD-rel. Hence, FADE and SAME scores are associated with both cognitive performance and individual risk factors for AD. Their potential utility as diagnostic and prognostic biomarkers warrants further exploration, particularly in individuals with SCD and healthy relatives of AD dementia patients.

4.
Brain ; 147(7): 2400-2413, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38654513

RESUMO

Memory clinic patients are a heterogeneous population representing various aetiologies of pathological ageing. It is not known whether divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± standard deviation, age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (n = 342), mild cognitive impairment (n = 118) or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid Alzheimer's disease biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5) as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test whether baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and mild cognitive impairment conversion rates of cognitively unimpaired participants and those with subjective cognitive decline. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy initially affected the medial temporal lobes, followed by further temporal regions and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological Alzheimer's disease biomarker levels, APOE ε4 carriership and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe, with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive Alzheimer's disease biomarkers and was associated with more generalized cognitive impairment. Limbic-predominant atrophy, in all participants and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of mild cognitive impairment conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, at both the subject and the group level, was excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for Alzheimer's disease in applied settings. The implementation of atrophy subtype- and stage-specific end points might increase the statistical power of pharmacological trials targeting early Alzheimer's disease.


Assuntos
Doença de Alzheimer , Atrofia , Disfunção Cognitiva , Progressão da Doença , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Atrofia/patologia , Idoso , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/patologia , Pessoa de Meia-Idade , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Testes Neuropsicológicos , Estudos de Coortes , Idoso de 80 Anos ou mais , Memória Episódica , Transtornos da Memória/patologia
5.
Brain ; 146(5): 2075-2088, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36288546

RESUMO

Previous studies have shown that the cholinergic nucleus basalis of Meynert and its white matter projections are affected in Alzheimer's disease dementia and mild cognitive impairment. However, it is still unknown whether these alterations can be found in individuals with subjective cognitive decline, and whether they are more pronounced than changes found in conventional brain volumetric measurements. To address these questions, we investigated microstructural alterations of two major cholinergic pathways in individuals along the Alzheimer's disease continuum using an in vivo model of the human cholinergic system based on neuroimaging. We included 402 participants (52 Alzheimer's disease, 66 mild cognitive impairment, 172 subjective cognitive decline and 112 healthy controls) from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study. We modelled the cholinergic white matter pathways with an enhanced diffusion neuroimaging pipeline that included probabilistic fibre-tracking methods and prior anatomical knowledge. The integrity of the cholinergic white matter pathways was compared between stages of the Alzheimer's disease continuum, in the whole cohort and in a CSF amyloid-beta stratified subsample. The discriminative power of the integrity of the pathways was compared to the conventional volumetric measures of hippocampus and nucleus basalis of Meynert, using a receiver operating characteristics analysis. A multivariate model was used to investigate the role of these pathways in relation to cognitive performance. We found that the integrity of the cholinergic white matter pathways was significantly reduced in all stages of the Alzheimer's disease continuum, including individuals with subjective cognitive decline. The differences involved posterior cholinergic white matter in the subjective cognitive decline stage and extended to anterior frontal white matter in mild cognitive impairment and Alzheimer's disease dementia stages. Both cholinergic pathways and conventional volumetric measures showed higher predictive power in the more advanced stages of the disease, i.e. mild cognitive impairment and Alzheimer's disease dementia. In contrast, the integrity of cholinergic pathways was more informative in distinguishing subjective cognitive decline from healthy controls, as compared with the volumetric measures. The multivariate model revealed a moderate contribution of the cholinergic white matter pathways but not of volumetric measures towards memory tests in the subjective cognitive decline and mild cognitive impairment stages. In conclusion, we demonstrated that cholinergic white matter pathways are altered already in subjective cognitive decline individuals, preceding the more widespread alterations found in mild cognitive impairment and Alzheimer's disease. The integrity of the cholinergic pathways identified the early stages of Alzheimer's disease better than conventional volumetric measures such as hippocampal volume or volume of cholinergic nucleus basalis of Meynert.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Doença de Alzheimer/psicologia , Encéfalo , Disfunção Cognitiva/psicologia , Colinérgicos
6.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339197

RESUMO

Alterations in the gut microbiome are associated with the pathogenesis of Alzheimer's disease (AD) and can be used as a diagnostic measure. However, longitudinal data of the gut microbiome and knowledge about its prognostic significance for the development and progression of AD are limited. The aim of the present study was to develop a reliable predictive model based on gut microbiome data for AD development. In this longitudinal study, we investigated the intestinal microbiome in 49 mild cognitive impairment (MCI) patients over a mean (SD) follow-up of 3.7 (0.6) years, using shotgun metagenomics. At the end of the 4-year follow-up (4yFU), 27 MCI patients converted to AD dementia and 22 MCI patients remained stable. The best taxonomic model for the discrimination of AD dementia converters from stable MCI patients included 24 genera, yielding an area under the receiver operating characteristic curve (AUROC) of 0.87 at BL, 0.92 at 1yFU and 0.95 at 4yFU. The best models with functional data were obtained via analyzing 25 GO (Gene Ontology) features with an AUROC of 0.87 at BL, 0.85 at 1yFU and 0.81 at 4yFU and 33 KO [Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog] features with an AUROC of 0.79 at BL, 0.88 at 1yFU and 0.82 at 4yFU. Using ensemble learning for these three models, including a clinical model with the four parameters of age, gender, body mass index (BMI) and Apolipoprotein E (ApoE) genotype, yielded an AUROC of 0.96 at BL, 0.96 at 1yFU and 0.97 at 4yFU. In conclusion, we identified novel and timely stable gut microbiome algorithms that accurately predict progression to AD dementia in individuals with MCI over a 4yFU period.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Humanos , Doença de Alzheimer/genética , Microbioma Gastrointestinal/genética , Estudos Longitudinais , Prognóstico , Disfunção Cognitiva/etiologia , Progressão da Doença , Biomarcadores
7.
Brain ; 145(4): 1473-1485, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35352105

RESUMO

We investigated whether the impact of tau-pathology on memory performance and on hippocampal/medial temporal memory function in non-demented individuals depends on the presence of amyloid pathology, irrespective of diagnostic clinical stage. We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). Two hundred and thirty-five participants completed task functional MRI and provided CSF (92 cognitively unimpaired, 100 experiencing subjective cognitive decline and 43 with mild cognitive impairment). Presence (A+) and absence (A-) of amyloid pathology was defined by CSF amyloid-ß42 (Aß42) levels. Free recall performance in the Free and Cued Selective Reminding Test, scene recognition memory accuracy and hippocampal/medial temporal functional MRI novelty responses to scene images were related to CSF total-tau and phospho-tau levels separately for A+ and A- individuals. We found that total-tau and phospho-tau levels were negatively associated with memory performance in both tasks and with novelty responses in the hippocampus and amygdala, in interaction with Aß42 levels. Subgroup analyses showed that these relationships were only present in A+ and remained stable when very high levels of tau (>700 pg/ml) and phospho-tau (>100 pg/ml) were excluded. These relationships were significant with diagnosis, age, education, sex, assessment site and Aß42 levels as covariates. They also remained significant after propensity score based matching of phospho-tau levels across A+ and A- groups. After classifying this matched sample for phospho-tau pathology (T-/T+), individuals with A+/T+ were significantly more memory-impaired than A-/T+ despite the fact that both groups had the same amount of phospho-tau pathology. ApoE status (presence of the E4 allele), a known genetic risk factor for Alzheimer's disease, did not mediate the relationship between tau pathology and hippocampal function and memory performance. Thus, our data show that the presence of amyloid pathology is associated with a linear relationship between tau pathology, hippocampal dysfunction and memory impairment, although the actual severity of amyloid pathology is uncorrelated. Our data therefore indicate that the presence of amyloid pathology provides a permissive state for tau-related hippocampal dysfunction and hippocampus-dependent recognition and recall impairment. This raises the possibility that in the predementia stage of Alzheimer's disease, removing the negative impact of amyloid pathology could improve memory and hippocampal function even if the amount of tau-pathology in CSF is not changed, whereas reducing increased CSF tau-pathology in amyloid-negative individuals may not proportionally improve memory function.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas , Apolipoproteínas E/genética , Biomarcadores , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Estudos Transversais , Hipocampo/metabolismo , Humanos , Proteínas tau/metabolismo
8.
Int J Geriatr Psychiatry ; 38(10): e6007, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37800601

RESUMO

BACKGROUND: Alzheimer's disease (AD) is often preceded by stages of cognitive impairment, namely subjective cognitive decline (SCD) and mild cognitive impairment (MCI). While cerebrospinal fluid (CSF) biomarkers are established predictors of AD, other non-invasive candidate predictors include personality traits, anxiety, and depression, among others. These predictors offer non-invasive assessment and exhibit changes during AD development and preclinical stages. METHODS: In a cross-sectional design, we comparatively evaluated the predictive value of personality traits (Big Five), geriatric anxiety and depression scores, resting-state functional magnetic resonance imaging activity of the default mode network, apoliprotein E (ApoE) genotype, and CSF biomarkers (tTau, pTau181, Aß42/40 ratio) in a multi-class support vector machine classification. Participants included 189 healthy controls (HC), 338 individuals with SCD, 132 with amnestic MCI, and 74 with mild AD from the multicenter DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). RESULTS: Mean predictive accuracy across all participant groups was highest when utilizing a combination of personality, depression, and anxiety scores. HC were best predicted by a feature set comprised of depression and anxiety scores and participants with AD were best predicted by a feature set containing CSF biomarkers. Classification of participants with SCD or aMCI was near chance level for all assessed feature sets. CONCLUSION: Our results demonstrate predictive value of personality trait and state scores for AD. Importantly, CSF biomarkers, personality, depression, anxiety, and ApoE genotype show complementary value for classification of AD and its at-risk stages.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Ansiedade , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/psicologia , Estudos Transversais , Depressão , Aprendizado de Máquina , Personalidade
9.
Alzheimers Dement ; 19(11): 4922-4934, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37070734

RESUMO

INTRODUCTION: It remains unclear whether functional brain networks are consistently altered in individuals with subjective cognitive decline (SCD) of diverse ethnic and cultural backgrounds and whether the network alterations are associated with an amyloid burden. METHODS: Cross-sectional resting-state functional magnetic resonance imaging connectivity (FC) and amyloid-positron emission tomography (PET) data from the Chinese Sino Longitudinal Study on Cognitive Decline and German DZNE Longitudinal Cognitive Impairment and Dementia cohorts were analyzed. RESULTS: Limbic FC, particularly hippocampal connectivity with right insula, was consistently higher in SCD than in controls, and correlated with SCD-plus features. Smaller SCD subcohorts with PET showed inconsistent amyloid positivity rates and FC-amyloid associations across cohorts. DISCUSSION: Our results suggest an early adaptation of the limbic network in SCD, which may reflect increased awareness of cognitive decline, irrespective of amyloid pathology. Different amyloid positivity rates may indicate a heterogeneous underlying etiology in Eastern and Western SCD cohorts when applying current research criteria. Future studies should identify culture-specific features to enrich preclinical Alzheimer's disease in non-Western populations. HIGHLIGHTS: Common limbic hyperconnectivity across Chinese and German subjective cognitive decline (SCD) cohorts was observed. Limbic hyperconnectivity may reflect awareness of cognition, irrespective of amyloid load. Further cross-cultural harmonization of SCD regarding Alzheimer's disease pathology is required.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Estudos Transversais , População do Leste Asiático , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons
10.
Cereb Cortex ; 31(11): 4901-4915, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34080613

RESUMO

Several Alzheimer's disease (AD) atrophy subtypes were identified, but their brain network properties are unclear. We analyzed data from two independent datasets, including 166 participants (103 AD/63 controls) from the DZNE-longitudinal cognitive impairment and dementia study and 151 participants (121 AD/30 controls) from the AD neuroimaging initiative cohorts, aiming to identify differences between AD atrophy subtypes in resting-state functional magnetic resonance imaging intra-network connectivity (INC) and global and nodal network properties. Using a data-driven clustering approach, we identified four AD atrophy subtypes with differences in functional connectivity, accompanied by clinical and biomarker alterations, including a medio-temporal-predominant (S-MT), a limbic-predominant (S-L), a diffuse (S-D), and a mild-atrophy (S-MA) subtype. S-MT and S-D showed INC reduction in the default mode, dorsal attention, visual and limbic network, and a pronounced reduction of "global efficiency" and decrease of the "clustering coefficient" in parietal and temporal lobes. Despite severe atrophy in limbic areas, the S-L exhibited only marginal global network but substantial nodal network failure. S-MA, in contrast, showed limited impairment in clinical and cognitive scores but pronounced global network failure. Our results contribute toward a better understanding of heterogeneity in AD with the detection of distinct differences in functional connectivity networks accompanied by CSF biomarker and cognitive differences in AD subtypes.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/patologia , Atrofia/patologia , Encéfalo , Disfunção Cognitiva/patologia , Humanos , Imageamento por Ressonância Magnética/métodos
11.
Proc Natl Acad Sci U S A ; 116(46): 23317-23325, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659040

RESUMO

Use-dependent long-term changes of neuronal response properties must be gated to prevent irrelevant activity from inducing inappropriate modifications. Here we test the hypothesis that local network dynamics contribute to such gating. As synaptic modifications depend on temporal contiguity between presynaptic and postsynaptic activity, we examined the effect of synchronized gamma (É£) oscillations on stimulation-dependent modifications of orientation selectivity in adult cat visual cortex. Changes of orientation maps were induced by pairing visual stimulation with electrical activation of the mesencephalic reticular formation. Changes in orientation selectivity were assessed with optical recording of intrinsic signals and multiunit recordings. When conditioning stimuli were associated with strong É£-oscillations, orientation domains matching the orientation of the conditioning grating stimulus became more responsive and expanded, because neurons with preferences differing by less than 30° from the orientation of the conditioning grating shifted their orientation preference toward the conditioned orientation. When conditioning stimuli induced no or only weak É£-oscillations, responsiveness of neurons driven by the conditioning stimulus decreased. These differential effects depended on the power of oscillations in the low É£-band (20 Hz to 48 Hz) and not on differences in discharge rate of cortical neurons, because there was no correlation between the discharge rates during conditioning and the occurrence of changes in orientation preference. Thus, occurrence and polarity of use-dependent long-term changes of cortical response properties appear to depend on the occurrence of É£-oscillations during induction and hence on the degree of temporal coherence of the change-inducing network activity.


Assuntos
Formação Reticular Mesencefálica/fisiologia , Plasticidade Neuronal , Córtex Visual/fisiologia , Animais , Gatos
12.
J Neurosci ; 40(38): 7190-7202, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938634

RESUMO

Subjective tinnitus is the conscious perception of sound in the absence of any acoustic source. The literature suggests various tinnitus mechanisms, most of which invoke changes in spontaneous firing rates of central auditory neurons resulting from modification of neural gain. Here, we present an alternative model based on evidence that tinnitus is: (1) rare in people who are congenitally deaf, (2) common in people with acquired deafness, and (3) potentially suppressed by active cochlear implants used for hearing restoration. We propose that tinnitus can only develop after fast auditory fiber activity has stimulated the synapse formation between fast-spiking parvalbumin positive (PV+) interneurons and projecting neurons in the ascending auditory path and coactivated frontostriatal networks after hearing onset. Thereafter, fast auditory fiber activity promotes feedforward and feedback inhibition mediated by PV+ interneuron activity in auditory-specific circuits. This inhibitory network enables enhanced stimulus resolution, attention-driven contrast improvement, and augmentation of auditory responses in central auditory pathways (neural gain) after damage of slow auditory fibers. When fast auditory fiber activity is lost, tonic PV+ interneuron activity is diminished, resulting in the prolonged response latencies, sudden hyperexcitability, enhanced cortical synchrony, elevated spontaneous γ oscillations, and impaired attention/stress-control that have been described in previous tinnitus models. Moreover, because fast processing is gained through sensory experience, tinnitus would not exist in congenital deafness. Electrical cochlear stimulation may have the potential to reestablish tonic inhibitory networks and thus suppress tinnitus. The proposed framework unites many ideas of tinnitus pathophysiology and may catalyze cooperative efforts to develop tinnitus therapies.


Assuntos
Vias Auditivas/fisiologia , Implantes Cocleares , Surdez/fisiopatologia , Zumbido/fisiopatologia , Animais , Vias Auditivas/crescimento & desenvolvimento , Vias Auditivas/fisiopatologia , Surdez/terapia , Potenciais Evocados Auditivos , Humanos , Neurogênese
13.
J Psychiatry Neurosci ; 46(6): E663-E674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916236

RESUMO

BACKGROUND: Social anxiety disorder is characterized by intense fear and avoidance of social interactions and scrutiny by others. Although alterations in attentional control seem to play a central role in the psychopathology of social anxiety disorder, the neural underpinnings in prefrontal brain regions have not yet been fully clarified. METHODS: The present study used functional MRI in participants (age 18-50 yr) with social anxiety disorder (n = 42, 31 female) and without (n = 58, 33 female). It investigated the interrelation of the effects of social anxiety disorder and early-life adversity (a main environmental risk factor of social anxiety disorder) on brain activity during an attentional control task. We applied DNA methylation analysis to determine whether epigenetic modulation in the gene encoding the glucocorticoid receptor, NR3C1, might play a mediating role in this process. RESULTS: We identified 2 brain regions in the left and medial prefrontal cortex that exhibited an interaction effect of social anxiety disorder and early-life adversity. In participants with low levels of early-life adversity, neural activity in response to disorder-related stimuli was increased in association with social anxiety disorder. In participants with high levels of early-life adversity, neural activity was increased only in participants without social anxiety disorder. NR3C1 DNA methylation partly mediated the effect of social anxiety disorder on brain activity as a function of early-life adversity. LIMITATIONS: The absence of behavioural correlates associated with social anxiety disorder limited functional interpretation of the results. CONCLUSION: These findings demonstrate that the neurobiological processes that underlie social anxiety disorder might be fundamentally different depending on experiences of early-life adversity. Long-lasting effects of early-life adversity might be encoded in NR3C1 DNA methylation and entail alterations in social anxiety disorder-related activity patterns in the neural network of attentional control.


Assuntos
Experiências Adversas da Infância , Fobia Social , Adolescente , Adulto , Ansiedade , Encéfalo/diagnóstico por imagem , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fobia Social/diagnóstico por imagem , Adulto Jovem
14.
Neuroimage ; 120: 394-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26169323

RESUMO

Simultaneous measurements of intra-cortical electrophysiology and hemodynamic signals in primates are essential for relating human neuroimaging studies with intra-cortical electrophysiology in monkeys. Previously, technically challenging and resourcefully demanding techniques such as fMRI and intrinsic-signal optical imaging have been used for such studies. Functional near-infrared spectroscopy is a relatively less cumbersome neuroimaging method that uses near-infrared light to detect small changes in concentrations of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total hemoglobin (HbT) in a volume of tissue with high specificity and temporal resolution. FNIRS is thus a good candidate for hemodynamic measurements in primates to acquire local hemodynamic signals during electrophysiological recordings. To test the feasibility of using epidural fNIRS with concomitant extracellular electrophysiology, we recorded neuronal and hemodynamic activity from the primary visual cortex of two anesthetized monkeys during visual stimulation. We recorded fNIRS epidurally, using one emitter and two detectors. We performed simultaneous cortical electrophysiology using tetrodes placed between the fNIRS sensors. We observed robust and reliable responses to the visual stimulation in both [HbO] and [HbR] signals, and quantified the signal-to-noise ratio of the epidurally measured signals. We also observed a positive correlation between stimulus-induced modulation of [HbO] and [HbR] signals and strength of neural modulation. Briefly, our results show that epidural fNIRS detects single-trial responses to visual stimuli on a trial-by-trial basis, and when coupled with cortical electrophysiology, is a promising tool for studying local hemodynamic signals and neurovascular coupling.


Assuntos
Córtex Cerebral/fisiologia , Eletrocorticografia/métodos , Acoplamento Neurovascular/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Espaço Epidural , Feminino , Hemoglobinas , Macaca mulatta , Masculino , Oxiemoglobinas
15.
J Neurophysiol ; 114(4): 2535-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26289473

RESUMO

Synchronous spike discharge of cortical neurons is thought to be a fingerprint of neuronal cooperativity. Because neighboring neurons are more densely connected to one another than neurons that are located further apart, near-synchronous spike discharge can be expected to be prevalent and it might provide an important basis for cortical computations. Using microelectrodes to record local groups of neurons does not allow for the reliable separation of synchronous spikes from different cells, because available spike sorting algorithms cannot correctly resolve the temporally overlapping waveforms. We show that high spike sorting performance of in vivo recordings, including overlapping spikes, can be achieved with a recently developed filter-based template matching procedure. Using tetrodes with a three-dimensional structure, we demonstrate with simulated data and ground truth in vitro data, obtained by dual intracellular recording of two neurons located next to a tetrode, that the spike sorting of synchronous spikes can be as successful as the spike sorting of nonoverlapping spikes and that the spatial information provided by multielectrodes greatly reduces the error rates. We apply the method to tetrode recordings from the prefrontal cortex of behaving primates, and we show that overlapping spikes can be identified and assigned to individual neurons to study synchronous activity in local groups of neurons.


Assuntos
Potenciais de Ação , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador , Animais , Simulação por Computador , Estimulação Elétrica , Hipocampo/fisiologia , Macaca , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Testes Neuropsicológicos , Técnicas de Patch-Clamp , Córtex Pré-Frontal/fisiologia , Ratos Wistar , Técnicas de Cultura de Tecidos , Percepção Visual/fisiologia
16.
J Clin Med ; 13(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38731254

RESUMO

Background: It is assumed that speech comprehension deficits in background noise are caused by age-related or acquired hearing loss. Methods: We examined young, middle-aged, and older individuals with and without hearing threshold loss using pure-tone (PT) audiometry, short-pulsed distortion-product otoacoustic emissions (pDPOAEs), auditory brainstem responses (ABRs), auditory steady-state responses (ASSRs), speech comprehension (OLSA), and syllable discrimination in quiet and noise. Results: A noticeable decline of hearing sensitivity in extended high-frequency regions and its influence on low-frequency-induced ABRs was striking. When testing for differences in OLSA thresholds normalized for PT thresholds (PTTs), marked differences in speech comprehension ability exist not only in noise, but also in quiet, and they exist throughout the whole age range investigated. Listeners with poor speech comprehension in quiet exhibited a relatively lower pDPOAE and, thus, cochlear amplifier performance independent of PTT, smaller and delayed ABRs, and lower performance in vowel-phoneme discrimination below phase-locking limits (/o/-/u/). When OLSA was tested in noise, listeners with poor speech comprehension independent of PTT had larger pDPOAEs and, thus, cochlear amplifier performance, larger ASSR amplitudes, and higher uncomfortable loudness levels, all linked with lower performance of vowel-phoneme discrimination above the phase-locking limit (/i/-/y/). Conslusions: This study indicates that listening in noise in humans has a sizable disadvantage in envelope coding when basilar-membrane compression is compromised. Clearly, and in contrast to previous assumptions, both good and poor speech comprehension can exist independently of differences in PTTs and age, a phenomenon that urgently requires improved techniques to diagnose sound processing at stimulus onset in the clinical routine.

17.
Neurobiol Aging ; 136: 99-110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340637

RESUMO

Here, we investigated whether fractional anisotropy (FA) of hippocampus-relevant white-matter tracts mediates the association between baseline Mediterranean diet adherence (MeDiAd) and verbal episodic memory over four years. Participants were healthy older adults with and without subjective cognitive decline and patients with amnestic mild cognitive impairment from the DELCODE cohort study (n = 376; age: 71.47 ± 6.09 years; 48.7 % female). MeDiAd and diffusion data were obtained at baseline. Verbal episodic memory was assessed at baseline and four yearly follow-ups. The associations between baseline MeDiAd and white matter, and verbal episodic memory's mean and rate of change over four years were tested with latent growth curve modeling. Baseline MeDiAd was associated with verbal episodic memory four years later (95 % confidence interval, CI [0.01, 0.32]) but not with its rate of change over this period. Baseline Fornix FA mediated - and, thus, explained - that association (95 % CI [0.002, 0.09]). Fornix FA may be an appropriate response biomarker of Mediterranean diet interventions on verbal memory in older adults.


Assuntos
Disfunção Cognitiva , Demência , Dieta Mediterrânea , Memória Episódica , Humanos , Feminino , Idoso , Masculino , Estudos de Coortes , Anisotropia , Imagem de Tensor de Difusão , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações
18.
J Alzheimers Dis ; 100(1): 193-205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848176

RESUMO

Background: The NIA-AA Research Framework on Alzheimer's disease (AD) proposes a transitional stage (stage 2) characterized by subtle cognitive decline, subjective cognitive decline (SCD) and mild neurobehavioral symptoms (NPS). Objective: To identify participant clusters based on stage 2 features and assess their association with amyloid positivity in cognitively unimpaired individuals. Methods: We included baseline data of N = 338 cognitively unimpaired participants from the DELCODE cohort with data on cerebrospinal fluid biomarkers for AD. Classification into the AD continuum (i.e., amyloid positivity, A+) was based on Aß42/40 status. Neuropsychological test data were used to assess subtle objective cognitive dysfunction (OBJ), the subjective cognitive decline interview (SCD-I) was used to detect SCD, and the Neuropsychiatric Inventory Questionnaire (NPI-Q) was used to assess NPS. A two-step cluster analysis was carried out and differences in AD biomarkers between clusters were analyzed. Results: We identified three distinct participant clusters based on presented symptoms. The highest rate of A+ participants (47.6%) was found in a cluster characterized by both OBJ and SCD. A cluster of participants that presented with SCD and NPS (A+:26.6%) and a cluster of participants with overall few symptoms (A+:19.7%) showed amyloid positivity in a range that was not higher than the expected A+ rate for the age group. Across the full sample, participants with a combination of SCD and OBJ in the memory domain showed a lower Aß42/ptau181 ratio compared to those with neither SCD nor OBJ. Conclusions: The cluster characterized by participants with OBJ and concomitant SCD was enriched for amyloid pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva , Testes Neuropsicológicos , Fragmentos de Peptídeos , Humanos , Masculino , Feminino , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Idoso , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/psicologia , Doença de Alzheimer/diagnóstico , Pessoa de Meia-Idade , Estudos de Coortes , Idoso de 80 Anos ou mais , Análise por Conglomerados
19.
Alzheimers Dement (Amst) ; 16(1): e12510, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213951

RESUMO

INTRODUCTION: We investigated the association of inflammatory mechanisms with markers of Alzheimer's disease (AD) pathology and rates of cognitive decline in the AD spectrum. METHODS: We studied 296 cases from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study (DELCODE) cohort, and an extension cohort of 276 cases of the Alzheimer's Disease Neuroimaging Initiative study. Using Bayesian confirmatory factor analysis, we constructed latent factors for synaptic integrity, microglia, cerebrovascular endothelial function, cytokine/chemokine, and complement components of the inflammatory response using a set of inflammatory markers in cerebrospinal fluid. RESULTS: We found strong evidence for an association of synaptic integrity, microglia response, and cerebrovascular endothelial function with a latent factor of AD pathology and with rates of cognitive decline. We found evidence against an association of complement and cytokine/chemokine factors with AD pathology and rates of cognitive decline. DISCUSSION: Latent factors provided access to directly unobservable components of the neuroinflammatory response and their association with AD pathology and cognitive decline.

20.
Sci Rep ; 14(1): 6095, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480804

RESUMO

In this study, we aimed to understand the potential role of the gut microbiome in the development of Alzheimer's disease (AD). We took a multi-faceted approach to investigate this relationship. Urine metabolomics were examined in individuals with AD and controls, revealing decreased formate and fumarate concentrations in AD. Additionally, we utilised whole-genome sequencing (WGS) data obtained from a separate group of individuals with AD and controls. This information allowed us to create and investigate host-microbiome personalised whole-body metabolic models. Notably, AD individuals displayed diminished formate microbial secretion in these models. Additionally, we identified specific reactions responsible for the production of formate in the host, and interestingly, these reactions were linked to genes that have correlations with AD. This study suggests formate as a possible early AD marker and highlights genetic and microbiome contributions to its production. The reduced formate secretion and its genetic associations point to a complex connection between gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and therapeutic avenues in AD management.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Microbiota , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microbiota/genética , Microbioma Gastrointestinal/genética , Genômica , Formiatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA