Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 539(7629): 378-383, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27806374

RESUMO

Sleep is conserved from invertebrates to vertebrates, and is tightly regulated in a homeostatic manner. The molecular and cellular mechanisms that determine the amount of rapid eye movement sleep (REMS) and non-REMS (NREMS) remain unknown. Here we identify two dominant mutations that affect sleep and wakefulness by using an electroencephalogram/electromyogram-based screen of randomly mutagenized mice. A splicing mutation in the Sik3 protein kinase gene causes a profound decrease in total wake time, owing to an increase in inherent sleep need. Sleep deprivation affects phosphorylation of regulatory sites on the kinase, suggesting a role for SIK3 in the homeostatic regulation of sleep amount. Sik3 orthologues also regulate sleep in fruitflies and roundworms. A missense, gain-of-function mutation in the sodium leak channel NALCN reduces the total amount and episode duration of REMS, apparently by increasing the excitability of REMS-inhibiting neurons. Our results substantiate the use of a forward-genetics approach for studying sleep behaviours in mice, and demonstrate the role of SIK3 and NALCN in regulating the amount of NREMS and REMS, respectively.


Assuntos
Canais Iônicos/genética , Mutagênese , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/genética , Sono/genética , Sono/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Eletroencefalografia , Eletromiografia , Homeostase/genética , Canais Iônicos/química , Canais Iônicos/metabolismo , Proteínas de Membrana , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA/genética , Distribuição Aleatória , Privação do Sono , Sono REM/genética , Sono REM/fisiologia , Fatores de Tempo , Vigília/genética , Vigília/fisiologia
2.
Genes Cells ; 15(8): 855-65, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20629982

RESUMO

Embryonic stem cells (ESCs) have a distinctive epigenome, which includes their genome-wide DNA methylation modification status, as represented by the ESC-specific hypomethylation of tissue-dependent and differentially methylated regions (T-DMRs) of Pou5f1 and Nanog. Here, we conducted a genome-wide investigation of sequence characteristics associated with T-DMRs that were differentially methylated between ESCs and somatic cells, by focusing on transposable elements including short interspersed elements (SINEs), long interspersed elements (LINEs) and long terminal repeats (LTRs). We found that hypomethylated T-DMRs were predominantly present in SINE-rich/LINE-poor genomic loci. The enrichment for SINEs spread over 300 kb in cis and there existed SINE-rich genomic domains spreading continuously over 1 Mb, which contained multiple hypomethylated T-DMRs. The characterization of sequence information showed that the enriched SINEs were relatively CpG rich and belonged to specific subfamilies. A subset of the enriched SINEs were hypomethylated T-DMRs in ESCs at Dppa3 gene locus, although SINEs are overall methylated in both ESCs and the liver. In conclusion, we propose that SINE enrichment is the genomic property of regions harboring hypomethylated T-DMRs in ESCs, which is a novel aspect of the ESC-specific epigenomic information.


Assuntos
Metilação de DNA/genética , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/genética , Fator 3 de Transcrição de Octâmero/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Animais , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo
3.
PLoS One ; 15(5): e0233561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470016

RESUMO

Cortical neurons fire intermittently and synchronously during non-rapid eye movement sleep (NREMS), in which active and silent periods are referred to as ON and OFF periods, respectively. Neuronal firing rates during ON periods (NREMS-ON-activity) are similar to those of wakefulness (W-activity), raising the possibility that NREMS-ON neuronal-activity is fragmented W-activity. To test this, we investigated the patterning and organization of cortical spike trains and of spike ensembles in neuronal networks using extracellular recordings in mice. Firing rates of neurons during NREMS-ON and W were similar, but showed enhanced bursting in NREMS with no apparent preference in occurrence, relative to the beginning or end of the on-state. Additionally, there was an overall increase in the randomness of occurrence of sequences comprised of multi-neuron ensembles in NREMS recorded from tetrodes. In association with increased burst firing, somatic calcium transients were increased in NREMS. The increased calcium transients associated with bursting during NREM may activate calcium-dependent, cell-signaling pathways for sleep related cellular processes.


Assuntos
Neurônios/fisiologia , Sono de Ondas Lentas , Vigília , Animais , Eletroencefalografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Neurosci Res ; 118: 92-103, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28434992

RESUMO

Sleep, a common event in daily life, has clear benefits for brain function, but what goes on in the brain when we sleep remains unclear. Sleep was long regarded as a silent state of the brain because the brain seemingly lacks interaction with the surroundings during sleep. Since the discovery of electrical activities in the brain at rest, electrophysiological methods have revealed novel concepts in sleep research. During sleep, the brain generates oscillatory activities that represent characteristic states of sleep. In addition to electrophysiology, opto/chemogenetics and two-photon Ca2+ imaging methods have clarified that the sleep/wake states organized by neuronal and glial ensembles in the cerebral cortex are transitioned by neuromodulators. Even with these methods, however, it is extremely difficult to elucidate how and when neuromodulators spread, accumulate, and disappear in the extracellular space of the cortex. Thus, real-time monitoring of neuromodulator dynamics at high spatiotemporal resolution is required for further understanding of sleep. Toward direct detection of neuromodulator behavior during sleep and wakefulness, in this review, we discuss developing imaging techniques based on the activation of G-protein-coupled receptors that allow for visualization of neuromodulator dynamics.


Assuntos
Córtex Cerebral/fisiologia , Neuroimagem/métodos , Neurotransmissores/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA