RESUMO
SUMMARY: Knowledge graphs are being increasingly used in biomedical research to link large amounts of heterogenous data and facilitate reasoning across diverse knowledge sources. Wider adoption and exploration of knowledge graphs in the biomedical research community is limited by requirements to understand the underlying graph structure in terms of entity types and relationships, represented as nodes and edges, respectively, and learn specialized query languages for graph mining and exploration. We have developed a user-friendly interface dubbed ExEmPLAR (Extracting, Exploring, and Embedding Pathways Leading to Actionable Research) to aid reasoning over biomedical knowledge graphs and assist with data-driven research and hypothesis generation. We explain the key functionalities of ExEmPLAR and demonstrate its use with a case study considering the relationship of Trypanosoma cruzi, the etiological agent of Chagas disease, to frequently associated cardiovascular conditions. AVAILABILITY AND IMPLEMENTATION: ExEmPLAR is freely accessible at https://www.exemplar.mml.unc.edu/. For code and instructions for the using the application, see: https://github.com/beasleyjonm/AOP-COP-Path-Extractor.
Assuntos
Pesquisa Biomédica , Reconhecimento Automatizado de PadrãoRESUMO
Heparan sulfate (HS), a sulfated polysaccharide abundant in the extracellular matrix, plays pivotal roles in various physiological and pathological processes by interacting with proteins. Investigating the binding selectivity of HS oligosaccharides to target proteins is essential, but the exhaustive inclusion of all possible oligosaccharides in microarray experiments is impractical. To address this challenge, we present a hybrid pipeline that integrates microarray and in silico techniques to design oligosaccharides with desired protein affinity. Using fibroblast growth factor 2 (FGF2) as a model protein, we assembled an in-house dataset of HS oligosaccharides on microarrays and developed two structural representations: a standard representation with all atoms explicit and a simplified representation with disaccharide units as "quasi-atoms." Predictive Quantitative Structure-Activity Relationship (QSAR) models for FGF2 affinity were developed using the Random Forest (RF) algorithm. The resulting models, considering the applicability domain, demonstrated high predictivity, with a correct classification rate of 0.81-0.80 and improved positive predictive values (PPV) up to 0.95. Virtual screening of 40 new oligosaccharides using the simplified model identified 15 computational hits, 11 of which were experimentally validated for high FGF2 affinity. This hybrid approach marks a significant step toward the targeted design of oligosaccharides with desired protein interactions, providing a foundation for broader applications in glycobiology.
Assuntos
Heparitina Sulfato , Análise em Microsséries , Modelos Moleculares , Humanos , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Ligação Proteica , Relação Quantitativa Estrutura-AtividadeRESUMO
There have been significant advances in the flexibility and power of in vitro cell-free translation systems. The increasing ability to incorporate noncanonical amino acids and complement translation with recombinant enzymes has enabled cell-free production of peptide-based natural products (NPs) and NP-like molecules. We anticipate that many more such compounds and analogs might be accessed in this way. To assess the peptide NP space that is directly accessible to current cell-free technologies, we developed a peptide parsing algorithm that breaks down peptide NPs into building blocks based on ribosomal translation logic. Using the resultant data set, we broadly analyze the biophysical properties of these privileged compounds and perform a retrobiosynthetic analysis to predict which peptide NPs could be directly synthesized in augmented cell-free translation reactions. We then tested these predictions by preparing a library of highly modified peptide NPs. Two macrocyclases, PatG and PCY1, were used to effect the head-to-tail macrocyclization of candidate NPs. This retrobiosynthetic analysis identified a collection of high-priority building blocks that are enriched throughout peptide NPs, yet they had not previously been tested in cell-free translation. To expand the cell-free toolbox into this space, we established, optimized, and characterized the flexizyme-enabled ribosomal incorporation of piperazic acids. Overall, these results demonstrate the feasibility of cell-free translation for peptide NP total synthesis while expanding the limits of the technology. This work provides a novel computational tool for exploration of peptide NP chemical space, that could be expanded in the future to allow design of ribosomal biosynthetic pathways for NPs and NP-like molecules.
Assuntos
Produtos Biológicos , Produtos Biológicos/química , Quimioinformática , Peptídeos/química , Biossíntese Peptídica , AminoácidosRESUMO
We introduce STOPLIGHT, a web portal to assist medicinal chemists in prioritizing hits from screening campaigns and the selection of compounds for optimization. STOPLIGHT incorporates services to assess 6 physiochemical and structural properties, 6 assay liabilities, and 11 pharmacokinetic properties, for any small molecule represented by its SMILES string. We briefly describe each service and illustrate the utility of this portal with a case study. The STOPLIGHT portal provides a user-friendly tool to guide hit selection in early drug discovery campaigns, whereby compounds with unfavorable properties can be quickly recognized and eliminated.
Assuntos
Descoberta de Drogas , Descoberta de Drogas/métodos , Software , Avaliação Pré-Clínica de Medicamentos/métodos , Internet , Bibliotecas de Moléculas Pequenas/químicaRESUMO
Antiviral drug development for coronavirus disease 2019 (COVID-19) is occurring at an unprecedented pace, yet there are still limited therapeutic options for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2, thus generating better antiviral efficacy. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro. Sixteen synergistic and eight antagonistic combinations were identified; among 16 synergistic cases, combinations of the US Food and Drug Administration (FDA)-approved drug nitazoxanide with remdesivir, amodiaquine, or umifenovir were most notable, all exhibiting significant synergy against SARS-CoV-2 in a cell model. However, the combination of remdesivir and lysosomotropic drugs, such as hydroxychloroquine, demonstrated strong antagonism. Overall, these results highlight the utility of drug repurposing and preclinical testing of drug combinations for discovering potential therapies to treat COVID-19.
Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Hidroxicloroquina/uso terapêuticoRESUMO
Exogenous metal particles and ions from implant devices are known to cause severe toxic events with symptoms ranging from adverse local tissue reactions to systemic toxicities, potentially leading to the development of cancers, heart conditions, and neurological disorders. Toxicity mechanisms, also known as Adverse Outcome Pathways (AOPs), that explain these metal-induced toxicities are severely understudied. Therefore, we deployed in silico structure- and knowledge-based approaches to identify proteome-level perturbations caused by metals and pathways that link these events to human diseases. We captured 177 structure-based, 347 knowledge-based, and 402 imputed metal-gene/protein relationships for chromium, cobalt, molybdenum, nickel, and titanium. We prioritized 72 proteins hypothesized to directly contact implant surfaces and contribute to adverse outcomes. Results of this exploratory analysis were formalized as structured AOPs. We considered three case studies reflecting the following possible situations: (i) the metal-protein-disease relationship was previously known; (ii) the metal-protein, protein-disease, and metal-disease relationships were individually known but were not linked (as a unified AOP); and (iii) one of three relationships was unknown and was imputed by our methods. These situations were illustrated by case studies on nickel-induced allergy/hypersensitivity, cobalt-induced heart failure, and titanium-induced periprosthetic osteolysis, respectively. All workflows, data, and results are freely available in https://github.com/DnlRKorn/Knowledge_Based_Metallomics/. An interactive view of select data is available at the ROBOKOP Neo4j Browser at http://robokopkg.renci.org/browser/.
Assuntos
Rotas de Resultados Adversos , Níquel , Humanos , Níquel/efeitos adversos , Titânio/toxicidade , Metais/toxicidade , Cobalto , CromoRESUMO
COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought the most severe disruptions to societies and economies since the Great Depression. Massive experimental and computational research effort to understand and characterize the disease and rapidly develop diagnostics, vaccines, and drugs has emerged in response to this devastating pandemic and more than 130 000 COVID-19-related research papers have been published in peer-reviewed journals or deposited in preprint servers. Much of the research effort has focused on the discovery of novel drug candidates or repurposing of existing drugs against COVID-19, and many such projects have been either exclusively computational or computer-aided experimental studies. Herein, we provide an expert overview of the key computational methods and their applications for the discovery of COVID-19 small-molecule therapeutics that have been reported in the research literature. We further outline that, after the first year the COVID-19 pandemic, it appears that drug repurposing has not produced rapid and global solutions. However, several known drugs have been used in the clinic to cure COVID-19 patients, and a few repurposed drugs continue to be considered in clinical trials, along with several novel clinical candidates. We posit that truly impactful computational tools must deliver actionable, experimentally testable hypotheses enabling the discovery of novel drugs and drug combinations, and that open science and rapid sharing of research results are critical to accelerate the development of novel, much needed therapeutics for COVID-19.
Assuntos
Tratamento Farmacológico da COVID-19 , Simulação por Computador , Desenho de Fármacos , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos , Antivirais/uso terapêutico , COVID-19/virologia , Ensaios Clínicos como Assunto , Humanos , Pandemias , SARS-CoV-2/efeitos dos fármacosRESUMO
Safety assessment is an essential component of the regulatory acceptance of industrial chemicals. Previously, we have developed a model to predict the skin sensitization potential of chemicals for two assays, the human patch test and murine local lymph node assay, and implemented this model in a web portal. Here, we report on the substantially revised and expanded freely available web tool, Pred-Skin version 3.0. This up-to-date version of Pred-Skin incorporates multiple quantitative structure-activity relationship (QSAR) models developed with in vitro, in chemico, and mice and human in vivo data, integrated into a consensus naïve Bayes model that predicts human effects. Individual QSAR models were generated using skin sensitization data derived from human repeat insult patch tests, human maximization tests, and mouse local lymph node assays. In addition, data for three validated alternative methods, the direct peptide reactivity assay, KeratinoSens, and the human cell line activation test, were employed as well. Models were developed using open-source tools and rigorously validated according to the best practices of QSAR modeling. Predictions obtained from these models were then used to build a naïve Bayes model for predicting human skin sensitization with the following external prediction accuracy: correct classification rate (89%), sensitivity (94%), positive predicted value (91%), specificity (84%), and negative predicted value (89%). As an additional assessment of model performance, we identified 11 cosmetic ingredients known to cause skin sensitization but were not included in our training set, and nine of them were accurately predicted as sensitizers by our models. Pred-Skin can be used as a reliable alternative to animal tests for predicting human skin sensitization.
Assuntos
Cosméticos/efeitos adversos , Testes Cutâneos , Pele/efeitos dos fármacos , Animais , Teorema de Bayes , Cosméticos/química , Humanos , Camundongos , Relação Quantitativa Estrutura-AtividadeRESUMO
Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 <500 nM) and low cytotoxicity in mammalian cells. Therefore, the computational approach employing deep learning developed here allowed us to discover two new families of potential next generation antimalarial agents, which are in compliance with the guidelines and criteria for antimalarial target candidates.
Assuntos
Antimaláricos/química , Antimaláricos/uso terapêutico , Aprendizado Profundo , Descoberta de Drogas/métodos , Malária/tratamento farmacológico , Humanos , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Relação Estrutura-AtividadeRESUMO
Many laboratories working in the field of drug discovery use the ZINC database to identify and then acquire commercially available chemicals. However, finding the best deal for a given compound is often time-intensive and laborious, as the process involves searching for all vendors selling the desired compound, comparing prices, and interacting with the preferred vendor. To streamline this process, we have developed ZINC Express, a web application that simplifies the online purchase of chemicals annotated in the ZINC database. For any compound with a known ZINC ID, ZINC Express finds a list of vendors offering that compound and for each such vendor returns the available package quantities, the price of each package, and the price per milligram along with a link to that vendor. We expect that ZINC Express will be of use to both computational and experimental researchers. ZINC Express is freely accessible online at https://zincexpress.mml.unc.edu/.
Assuntos
Comércio , Descoberta de Drogas , Bases de Dados Factuais , ZincoRESUMO
Computational methods to predict molecular properties regarding safety and toxicology represent alternative approaches to expedite drug development, screen environmental chemicals, and thus significantly reduce associated time and costs. There is a strong need and interest in the development of computational methods that yield reliable predictions of toxicity, and many approaches, including the recently introduced deep neural networks, have been leveraged towards this goal. Herein, we report on the collection, curation, and integration of data from the public data sets that were the source of the ChemIDplus database for systemic acute toxicity. These efforts generated the largest publicly available such data set comprising > 80,000 compounds measured against a total of 59 acute systemic toxicity end points. This data was used for developing multiple single- and multitask models utilizing random forest, deep neural networks, convolutional, and graph convolutional neural network approaches. For the first time, we also reported the consensus models based on different multitask approaches. To the best of our knowledge, prediction models for 36 of the 59 end points have never been published before. Furthermore, our results demonstrated a significantly better performance of the consensus model obtained from three multitask learning approaches that particularly predicted the 29 smaller tasks (less than 300 compounds) better than other models developed in the study. The curated data set and the developed models have been made publicly available at https://github.com/ncats/ld50-multitask, https://predictor.ncats.io/, and https://cactus.nci.nih.gov/download/acute-toxicity-db (data set only) to support regulatory and research applications.
Assuntos
Aprendizado Profundo , Consenso , Bases de Dados Factuais , Redes Neurais de ComputaçãoRESUMO
Natural products and their secondary metabolites are promising starting points for the development of drug prototypes and new drugs, as many current treatments for numerous diseases are directly or indirectly related to such compounds. State-of-the-art, curated, integrated, and frequently updated databases of secondary metabolites are thus highly relevant to drug discovery. The SistematX Web Portal, introduced in 2018, is undergoing development to address this need and documents crucial information about plant secondary metabolites, including the exact location of the species from which the compounds were isolated. SistematX also allows registered users to log in to the data management area and gain access to administrative pages. This study reports recent updates and modifications to the SistematX Web Portal, including a batch download option, the generation and visualization of 1H and 13C nuclear magnetic resonance spectra, and the calculation of physicochemical (drug-like and lead-like) properties and biological activity profiles. The SistematX Web Portal is freely available at http://sistematx.ufpb.br.
Assuntos
Produtos Biológicos , Bases de Dados Factuais , Descoberta de Drogas , Espectroscopia de Ressonância Magnética , PlantasRESUMO
Prediction of chemical bioactivity and physical properties has been one of the most important applications of statistical and more recently, machine learning and artificial intelligence methods in chemical sciences. This field of research, broadly known as quantitative structure-activity relationships (QSAR) modeling, has developed many important algorithms and has found a broad range of applications in physical organic and medicinal chemistry in the past 55+ years. This Perspective summarizes recent technological advances in QSAR modeling but it also highlights the applicability of algorithms, modeling methods, and validation practices developed in QSAR to a wide range of research areas outside of traditional QSAR boundaries including synthesis planning, nanotechnology, materials science, biomaterials, and clinical informatics. As modern research methods generate rapidly increasing amounts of data, the knowledge of robust data-driven modelling methods professed within the QSAR field can become essential for scientists working both within and outside of chemical research. We hope that this contribution highlighting the generalizable components of QSAR modeling will serve to address this challenge.
Assuntos
Química Farmacêutica/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Preparações Farmacêuticas/química , Algoritmos , Animais , Inteligência Artificial , Bases de Dados Factuais , Desenho de Fármacos , História do Século XX , História do Século XXI , Humanos , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Teoria Quântica , Reprodutibilidade dos TestesRESUMO
Correction for 'QSAR without borders' by Eugene N. Muratov et al., Chem. Soc. Rev., 2020, DOI: 10.1039/d0cs00098a.
RESUMO
New Approach Methodologies (NAMs) that employ artificial intelligence (AI) for predicting adverse effects of chemicals have generated optimistic expectations as alternatives to animal testing. However, the major underappreciated challenge in developing robust and predictive AI models is the impact of the quality of the input data on the model accuracy. Indeed, poor data reproducibility and quality have been frequently cited as factors contributing to the crisis in biomedical research, as well as similar shortcomings in the fields of toxicology and chemistry. In this article, we review the most recent efforts to improve confidence in the robustness of toxicological data and investigate the impact that data curation has on the confidence in model predictions. We also present two case studies demonstrating the effect of data curation on the performance of AI models for predicting skin sensitisation and skin irritation. We show that, whereas models generated with uncurated data had a 7-24% higher correct classification rate (CCR), the perceived performance was, in fact, inflated owing to the high number of duplicates in the training set. We assert that data curation is a critical step in building computational models, to help ensure that reliable predictions of chemical toxicity are achieved through use of the models.
Assuntos
Alternativas aos Testes com Animais , Inteligência Artificial , Animais , Simulação por Computador , Confiabilidade dos Dados , Reprodutibilidade dos TestesRESUMO
Small, colloidally aggregating molecules (SCAMs) are the most common source of false positives in high-throughput screening (HTS) campaigns. Although SCAMs can be experimentally detected and suppressed by the addition of detergent in the assay buffer, detergent sensitivity is not routinely monitored in HTS. Computational methods are thus needed to flag potential SCAMs during HTS triage. In this study, we have developed and rigorously validated quantitative structure-interference relationship (QSIR) models of detergent-sensitive aggregation in several HTS campaigns under various assay conditions and screening concentrations. In particular, we have modeled detergent-sensitive aggregation in an AmpC ß-lactamase assay, the preferred HTS counter-screen for aggregation, as well as in another assay that measures cruzain inhibition. Our models increase the accuracy of aggregation prediction by â¼53% in the ß-lactamase assay and by â¼46% in the cruzain assay compared to previously published methods. We also discuss the importance of both assay conditions and screening concentrations in the development of QSIR models for various interference mechanisms besides aggregation. The models developed in this study are publicly available for fast prediction within the SCAM detective web application (https://scamdetective.mml.unc.edu/).
Assuntos
Ensaios de Triagem em Larga EscalaRESUMO
The development of novel therapeutics is urgently required for diseases where existing treatments are failing due to the emergence of resistance. This is particularly pertinent for parasitic infections of the tropics and sub-tropics, referred to collectively as neglected tropical diseases, where the commercial incentives to develop new drugs are weak. One such disease is schistosomiasis, a highly prevalent acute and chronic condition caused by a parasitic helminth infection, with three species of the genus Schistosoma infecting humans. Currently, a single 40-year old drug, praziquantel, is available to treat all infective species, but its use in mass drug administration is leading to signs of drug-resistance emerging. To meet the challenge of developing new therapeutics against this disease, we developed an innovative computational drug repurposing pipeline supported by phenotypic screening. The approach highlighted several protein kinases as interesting new biological targets for schistosomiasis as they play an essential role in many parasite's biological processes. Focusing on this target class, we also report the first elucidation of the kinome of Schistosoma japonicum, as well as updated kinomes of S. mansoni and S. haematobium. In comparison with the human kinome, we explored these kinomes to identify potential targets of existing inhibitors which are unique to Schistosoma species, allowing us to identify novel targets and suggest approved drugs that might inhibit them. These include previously suggested schistosomicidal agents such as bosutinib, dasatinib, and imatinib as well as new inhibitors such as vandetanib, saracatinib, tideglusib, alvocidib, dinaciclib, and 22 newly identified targets such as CHK1, CDC2, WEE, PAKA, MEK1. Additionally, the primary and secondary targets in Schistosoma of those approved drugs are also suggested, allowing for the development of novel therapeutics against this important yet neglected disease.
Assuntos
Biologia Computacional/métodos , Reposicionamento de Medicamentos/métodos , Inibidores de Proteínas Quinases/farmacologia , Schistosoma/efeitos dos fármacos , Esquistossomicidas/farmacologia , Animais , Bases de Dados de Proteínas , Reprodutibilidade dos TestesRESUMO
Quantitative structure-activity relationships (QSAR) models are often seen as a "black box" because they are considered difficult to interpret. Meanwhile, qualitative approaches, e.g., structural alerts (SA) or read-across, provide mechanistic insight, which is preferred for regulatory purposes, but predictive accuracy of such approaches is often low. Herein, we introduce the chemistry-wide association study (CWAS) approach, a novel framework that both addresses such deficiencies and combines advantages of statistical QSAR and alert-based approaches. The CWAS framework consists of the following steps: (i) QSAR model building for an end point of interest, (ii) identification of key chemical features, (iii) determination of communities of such features disproportionately co-occurring more frequently in the active than in the inactive class, and (iv) assembling these communities to form larger (and not necessarily chemically connected) novel structural alerts with high specificity. As a proof-of-concept, we have applied CWAS to model Ames mutagenicity and Stevens-Johnson Syndrome (SJS). For the well-studied Ames mutagenicity data set, we identified 76 important individual fragments and assembled co-occurring fragments into SA both replicative of known as well as representing novel mutagenicity alerts. For the SJS data set, we identified 29 important fragments and assembled co-occurring communities into SA including both known and novel alerts. In summary, we demonstrate that CWAS provides a new framework to interpret predictive QSAR models and derive refined structural alerts for more effective design and safety assessment of drugs and drug candidates.
Assuntos
Descoberta de Drogas/métodos , Testes de Mutagenicidade/métodos , Preparações Farmacêuticas/química , Relação Quantitativa Estrutura-Atividade , Síndrome de Stevens-Johnson/etiologia , Bases de Dados Factuais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Humanos , Modelos BiológicosRESUMO
Elucidation of the mechanistic relationships between drugs, their targets, and diseases is at the core of modern drug discovery research. Thousands of studies relevant to the drug-target-disease (DTD) triangle have been published and annotated in the Medline/PubMed database. Mining this database affords rapid identification of all published studies that confirm connections between vertices of this triangle or enable new inferences of such connections. To this end, we describe the development of Chemotext, a publicly available Web server that mines the entire compendium of published literature in PubMed annotated by Medline Subject Heading (MeSH) terms. The goal of Chemotext is to identify all known DTD relationships and infer missing links between vertices of the DTD triangle. As a proof-of-concept, we show that Chemotext could be instrumental in generating new drug repurposing hypotheses or annotating clinical outcomes pathways for known drugs. The Chemotext Web server is freely available at http://chemotext.mml.unc.edu .
Assuntos
Mineração de Dados/métodos , Bases de Dados de Compostos Químicos , Sistemas de Liberação de Medicamentos , Tratamento Farmacológico , Internet , Medical Subject Headings , PubMed , Descoberta de Drogas , Humanos , Linguagens de Programação , Interface Usuário-ComputadorRESUMO
Multiple approaches to quantitative structure-activity relationship (QSAR) modeling using various statistical or machine learning techniques and different types of chemical descriptors have been developed over the years. Oftentimes models are used in consensus to make more accurate predictions at the expense of model interpretation. We propose a simple, fast, and reliable method termed Multi-Descriptor Read Across (MuDRA) for developing both accurate and interpretable models. The method is conceptually related to the well-known kNN approach but uses different types of chemical descriptors simultaneously for similarity assessment. To benchmark the new method, we have built MuDRA models for six different end points (Ames mutagenicity, aquatic toxicity, hepatotoxicity, hERG liability, skin sensitization, and endocrine disruption) and compared the results with those generated with conventional consensus QSAR modeling. We find that models built with MuDRA show consistently high external accuracy similar to that of conventional QSAR models. However, MuDRA models excel in terms of transparency, interpretability, and computational efficiency. We posit that due to its methodological simplicity and reliable predictive accuracy, MuDRA provides a powerful alternative to a much more complex consensus QSAR modeling. MuDRA is implemented and freely available at the Chembench web portal ( https://chembench.mml.unc.edu/mudra ).