Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 22(12): e53007, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34605140

RESUMO

While Epstein-Barr virus (EBV) establishes a life-long latent infection in apparently healthy human immunocompetent hosts, immunodeficient individuals are at particular risk to develop lymphoproliferative B-cell malignancies caused by EBV. A key EBV protein is the transcription factor EBV nuclear antigen 2 (EBNA2), which initiates B-cell proliferation. Here, we combine biochemical, cellular, and in vivo experiments demonstrating that the mitotic polo-like kinase 1 (PLK1) binds to EBNA2, phosphorylates its transactivation domain, and thereby inhibits its biological activity. EBNA2 mutants that impair PLK1 binding or prevent EBNA2 phosphorylation are gain-of-function mutants. They exhibit enhanced transactivation capacities, accelerate the proliferation of infected B cells, and promote the development of monoclonal B-cell lymphomas in infected mice. Thus, PLK1 coordinates the activity of EBNA2 to attenuate the risk of tumor incidences in favor of the establishment of latency in the infected but healthy host.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Animais , Proteínas de Ciclo Celular , Infecções por Vírus Epstein-Barr/complicações , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Latência Viral , Quinase 1 Polo-Like
2.
Eur J Immunol ; 51(1): 64-75, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949466

RESUMO

Immune responses to Epstein-Barr virus (EBV) infection synergize with the main genetic risk factor HLA-DRB1*15:01 (HLA-DR15) to increase the likelihood to develop the autoimmune disease multiple sclerosis (MS) at least sevenfold. In order to gain insights into this synergy, we investigated HLA-DR15 positive human immune compartments after reconstitution in immune-compromised mice (humanized mice) with and without EBV infection. We detected elevated activation of both CD4+ and CD8+ T cells in HLA-DR15 donor-reconstituted humanized mice at steady state, even when compared to immune compartments carrying HLA-DRB1*04:01 (HLA-DR4), which is associated with other autoimmune diseases. Increased CD8+ T cell expansion and activation was also observed in HLA-DR15 donor-reconstituted humanized mice after EBV infection. Despite this higher immune activation, EBV viral loads were less well controlled in the context of HLA-DR15. Indeed, HLA-DR15-restricted CD4+ T cell clones recognized EBV-transformed B cell lines less efficiently and demonstrated cross-reactivity toward allogeneic target cells and one MS autoantigen. These findings suggest that EBV as one of the main environmental risk factors and HLA-DR15 as the main genetic risk factor for MS synergize by priming hyperreactive T-cell compartments, which then control the viral infection less efficiently and contain cross-reactive CD4+ T cell clones.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Subtipos Sorológicos de HLA-DR/imunologia , Esclerose Múltipla/imunologia , Imunidade Adaptativa , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Predisposição Genética para Doença , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Subtipos Sorológicos de HLA-DR/genética , Herpesvirus Humano 4/imunologia , Humanos , Isoantígenos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Esclerose Múltipla/etiologia , Esclerose Múltipla/genética , Bainha de Mielina/imunologia , Fatores de Risco
4.
PLoS Pathog ; 16(4): e1008477, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251475

RESUMO

Post-transplant lymphoproliferative disorder (PTLD) is a potentially fatal complication after organ transplantation frequently associated with the Epstein-Barr virus (EBV). Immunosuppressive treatment is thought to allow the expansion of EBV-infected B cells, which often express all eight oncogenic EBV latent proteins. Here, we assessed whether HLA-A2 transgenic humanized NSG mice treated with the immunosuppressant FK506 could be used to model EBV-PTLD. We found that FK506 treatment of EBV-infected mice led to an elevated viral burden, more frequent tumor formation and diminished EBV-induced T cell responses, indicative of reduced EBV-specific immune control. EBV latency III and lymphoproliferation-associated cellular transcripts were up-regulated in B cells from immunosuppressed animals, akin to the viral and host gene expression pattern found in EBV-PTLD. Utilizing an unbiased gene expression profiling approach, we identified genes differentially expressed in B cells of EBV-infected animals with and without FK506 treatment. Upon investigating the most promising candidates, we validated sCD30 as a marker of uncontrolled EBV proliferation in both humanized mice and in pediatric patients with EBV-PTLD. High levels of sCD30 have been previously associated with EBV-PTLD in patients. As such, we believe that humanized mice can indeed model aspects of EBV-PTLD development and may prove useful for the safety assessment of immunomodulatory therapies.


Assuntos
Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/virologia , Tacrolimo/farmacologia , Animais , Linfócitos B/metabolismo , DNA Viral , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/virologia , Feminino , Perfilação da Expressão Gênica/métodos , Antígeno HLA-A2 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/patogenicidade , Humanos , Hospedeiro Imunocomprometido , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Transplante de Órgãos/efeitos adversos , Transcriptoma/genética , Carga Viral
5.
PLoS Pathog ; 14(4): e1007039, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29709016

RESUMO

The oncogenic Epstein Barr virus (EBV) infects the majority of the human population and usually persists within its host for life without symptoms. The EBV oncoproteins nuclear antigen 3A (EBNA3A) and 3C (EBNA3C) are required for B cell transformation in vitro and are expressed in EBV associated immunoblastic lymphomas in vivo. In order to address the necessity of EBNA3A and EBNA3C for persistent EBV infection in vivo, we infected NOD-scid γcnull mice with reconstituted human immune system components (huNSG mice) with recombinant EBV mutants devoid of EBNA3A or EBNA3C expression. These EBV mutants established latent infection in secondary lymphoid organs of infected huNSG mice for at least 3 months, but did not cause tumor formation. Low level viral persistence in the absence of EBNA3A or EBNA3C seemed to be supported primarily by proliferation with the expression of early latent EBV gene products transitioning into absent viral protein expression without elevated lytic replication. In vitro, EBNA3A and EBNA3C deficient EBV infected B cells could be rescued from apoptosis through CD40 stimulation, mimicking T cell help in secondary lymphoid tissues. Thus, even in the absence of the oncogenes EBNA3A and 3C, EBV can access a latent gene expression pattern that is reminiscent of EBV persistence in healthy virus carriers without prior expression of its whole growth transforming program.


Assuntos
Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/patogenicidade , Animais , Linfócitos B/metabolismo , Células Cultivadas , Infecções por Vírus Epstein-Barr/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos
6.
Blood ; 124(16): 2533-43, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25205117

RESUMO

A growing body of evidence suggests that the human natural killer (NK)-cell compartment is phenotypically and functionally heterogeneous and is composed of several differentiation stages. Moreover, NK-cell subsets have been shown to exhibit adaptive immune features during herpes virus infection in experimental mice and to expand preferentially during viral infections in humans. However, both phenotype and role of NK cells during acute symptomatic Epstein-Barr virus (EBV) infection, termed infectious mononucleosis (IM), remain unclear. Here, we longitudinally assessed the kinetics, the differentiation, and the proliferation of subsets of NK cells in pediatric IM patients. Our results indicate that acute IM is characterized by the preferential proliferation of early-differentiated CD56(dim) NKG2A(+) immunoglobulin-like receptor(-) NK cells. Moreover, this NK-cell subset exhibits features of terminal differentiation and persists at higher frequency during at least the first 6 months after acute IM. Finally, we demonstrate that this NK-cell subset preferentially degranulates and proliferates on exposure to EBV-infected B cells expressing lytic antigens. Thus, early-differentiated NK cells might play a key role in the immune control of primary infection with this persistent tumor-associated virus.


Assuntos
Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/imunologia , Mononucleose Infecciosa/imunologia , Mononucleose Infecciosa/virologia , Células Matadoras Naturais/imunologia , Adolescente , Adulto , Antígeno CD56/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Criança , Pré-Escolar , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/isolamento & purificação , Humanos , Lactente , Células Matadoras Naturais/citologia , Ativação Linfocitária , Adulto Jovem
7.
Cell Rep ; 35(5): 109056, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33951431

RESUMO

Herpesvirus infections shape the human natural killer (NK) cell compartment. While Epstein-Barr virus (EBV) expands immature NKG2A+ NK cells, human cytomegalovirus (CMV) drives accumulation of adaptive NKG2C+ NK cells. Kaposi sarcoma-associated herpesvirus (KSHV) is a close relative of EBV, and both are associated with lymphomas, including primary effusion lymphoma (PEL), which nearly always harbors both viruses. In this study, KSHV dual infection of mice with reconstituted human immune system components leads to the accumulation of CD56-CD16+CD38+CXCR6+ NK cells. CD56-CD16+ NK cells were also more frequently found in KSHV-seropositive Kenyan children. This NK cell subset is poorly cytotoxic against otherwise-NK-cell-susceptible and antibody-opsonized targets. Accordingly, NK cell depletion does not significantly alter KSHV infection in humanized mice. These data suggest that KSHV might escape NK-cell-mediated immune control by driving CD56-CD16+ NK cell differentiation.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 8/patogenicidade , Células Matadoras Naturais/imunologia , Animais , Diferenciação Celular , Humanos , Camundongos
8.
Life Sci Alliance ; 3(8)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32576602

RESUMO

HIV and EBV are human pathogens that cause a considerable burden to worldwide health. In combination, these viruses are linked to AIDS-associated lymphomas. We found that EBV, which transforms B cells, renders them susceptible to HIV-1 infection in a CXCR4 and CD4-dependent manner in vitro and that CXCR4-tropic HIV-1 integrates into the genome of these B cells with the same molecular profile as in autologous CD4+ T cells. In addition, we established a humanized mouse model to investigate the in vivo interactions of EBV and HIV-1 upon coinfection. The respective mice that reconstitute human immune system components upon transplantation with CD34+ human hematopoietic progenitor cells could recapitulate aspects of EBV and HIV immunobiology observed in dual-infected patients. Upon coinfection of humanized mice, EBV/HIV dual-infected B cells could be detected, but were susceptible to CD8+ T-cell-mediated immune control.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/virologia , Herpesvirus Humano 4/patogenicidade , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Linfócitos B/virologia , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Coinfecção , Modelos Animais de Doenças , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/virologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por HIV/genética , Soropositividade para HIV , HIV-1/metabolismo , HIV-1/patogenicidade , Células-Tronco Hematopoéticas/patologia , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Receptores CXCR4/metabolismo , Receptores CXCR4/fisiologia , Linfócitos T/imunologia
9.
mBio ; 10(1)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30647153

RESUMO

The human persistent and oncogenic Epstein-Barr virus (EBV) was one of the first viruses that were described to express viral microRNAs (miRNAs). These have been proposed to modulate many host and viral functions, but their predominant role in vivo has remained unclear. We compared recombinant EBVs expressing or lacking miRNAs during in vivo infection of mice with reconstituted human immune system components and found that miRNA-deficient EBV replicates to lower viral titers with decreased frequencies of proliferating EBV-infected B cells. In response, activated cytotoxic EBV-specific T cells expand to lower frequencies than during infection with miRNA-expressing EBV. However, when we depleted CD8+ T cells the miRNA-deficient virus reached similar viral loads as wild-type EBV, increasing by more than 200-fold in the spleens of infected animals. Furthermore, CD8+ T cell depletion resulted in lymphoma formation in the majority of animals after miRNA-deficient EBV infection, while no tumors emerged when CD8+ T cells were present. Thus, miRNAs mainly serve the purpose of immune evasion from T cells in vivo and could become a therapeutic target to render EBV-associated malignancies more immunogenic.IMPORTANCE Epstein-Barr virus (EBV) infects the majority of the human population and usually persists asymptomatically within its host. Nevertheless, EBV is the causative agent for infectious mononucleosis (IM) and for lymphoproliferative disorders, including Burkitt and Hodgkin lymphomas. The immune system of the infected host is thought to prevent tumor formation in healthy virus carriers. EBV was one of the first viruses described to express miRNAs, and many host and viral targets were identified for these in vitro However, their role during EBV infection in vivo remained unclear. This work is the first to describe that EBV miRNAs mainly increase viremia and virus-associated lymphomas through dampening antigen recognition by adaptive immune responses in mice with reconstituted immune responses. Currently, there is no prophylactic or therapeutic treatment to restrict IM or EBV-associated malignancies; thus, targeting EBV miRNAs could promote immune responses and limit EBV-associated pathologies.


Assuntos
Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/patogenicidade , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MicroRNAs/metabolismo , RNA Viral/metabolismo , Linfócitos T/imunologia , Animais , Linfócitos B/virologia , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Deleção de Genes , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , RNA Viral/genética , Carga Viral
10.
Philos Trans R Soc Lond B Biol Sci ; 374(1773): 20180296, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30955487

RESUMO

Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) comprise the oncogenic human γ-herpesvirus family and are responsible for 2-3% of all tumours in man. With their prominent growth-transforming abilities and high prevalence in the human population, these pathogens have probably shaped the human immune system throughout evolution for near perfect immune control of the respective chronic infections in the vast majority of healthy pathogen carriers. The exclusive tropism of EBV and KSHV for humans has, however, made it difficult in the past to study their infection, tumourigenesis and immune control in vivo. Mice with reconstituted human immune system components (humanized mice) support replication of both viruses with both persisting latent and productive lytic infection. Moreover, B-cell lymphomas can be induced by EBV alone and KSHV co-infection with gene expression hallmarks of human malignancies that are associated with both viruses. Furthermore, cell-mediated immune control by primarily cytotoxic lymphocytes is induced upon infection and can be probed for its functional characteristics as well as putative requirements for its priming. Insights that have been gained from this model and remaining questions will be discussed in this review. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia , Sarcoma de Kaposi/virologia , Animais , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/imunologia , Humanos , Camundongos , Camundongos Transgênicos , Sarcoma de Kaposi/imunologia
11.
Blood Adv ; 3(7): 1129-1144, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30952679

RESUMO

Infectious mononucleosis, caused by infection with the human gamma-herpesvirus Epstein-Barr virus (EBV), manifests with one of the strongest CD8+ T-cell responses described in humans. The resulting T-cell memory response controls EBV infection asymptomatically in the vast majority of persistently infected individuals. Whether and how dendritic cells (DCs) contribute to the priming of this near-perfect immune control remains unclear. Here we show that of all the human DC subsets, plasmacytoid DCs (pDCs) play a central role in the detection of EBV infection in vitro and in mice with reconstituted human immune system components. pDCs respond to EBV by producing the interferon (IFN) subtypes α1, α2, α5, α7, α14, and α17. However, the virus curtails this type I IFN production with its latent EBV gene products EBNA3A and EBNA3C. The induced type I IFNs inhibit EBV entry and the proliferation of latently EBV-transformed B cells but do not influence lytic reactivation of the virus in vitro. In vivo, exogenous IFN-α14 and IFN-α17, as well as pDC expansion, delay EBV infection and the resulting CD8+ T-cell expansion, but pDC depletion does not significantly influence EBV infection. Thus, consistent with the observation that primary immunodeficiencies compromising type I IFN responses affect only alpha- and beta-herpesvirus infections, we found that EBV elicits pDC responses that transiently suppress viral replication and attenuate CD8+ T-cell expansion but are not required to control primary infection.


Assuntos
Células Dendríticas/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Interferon Tipo I/biossíntese , Animais , Linfócitos T CD8-Positivos/patologia , Proliferação de Células , Humanos , Interferon Tipo I/farmacologia , Camundongos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral
12.
Cell Host Microbe ; 22(1): 61-73.e7, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704654

RESUMO

The human tumor viruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) establish persistent infections in B cells. KSHV is linked to primary effusion lymphoma (PEL), and 90% of PELs also contain EBV. Studies on persistent KSHV infection in vivo and the role of EBV co-infection in PEL development have been hampered by the absence of small animal models. We developed mice reconstituted with human immune system components as a model for KSHV infection and find that EBV/KSHV dual infection enhanced KSHV persistence and tumorigenesis. Dual-infected cells displayed a plasma cell-like gene expression pattern similar to PELs. KSHV persisted in EBV-transformed B cells and was associated with lytic EBV gene expression, resulting in increased tumor formation. Evidence of elevated lytic EBV replication was also found in EBV/KSHV dually infected lymphoproliferative disorders in humans. Our data suggest that KSHV augments EBV-associated tumorigenesis via stimulation of lytic EBV replication.


Assuntos
Coinfecção , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/patogenicidade , Neoplasias/virologia , Animais , Linfócitos B/virologia , Linhagem Celular Tumoral , Citocinas/sangue , DNA Viral/análise , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Genes Virais/genética , Infecções por Herpesviridae/sangue , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma de Efusão Primária/etiologia , Linfoma de Efusão Primária/virologia , Camundongos , Baço/patologia , Baço/virologia , Taxa de Sobrevida , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA