Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1942): 20201600, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33434468

RESUMO

Functionally distinct species (i.e. species with unique trait combinations in the community) can support important ecological roles and contribute disproportionately to ecosystem functioning. Yet, how functionally distinct species have responded to recent climate change and human exploitation has been widely overlooked. Here, using ecological traits and long-term fish data in the North Sea, we identified functionally distinct and functionally common species, and evaluated their spatial and temporal dynamics in relation to environmental variables and fishing pressure. Functionally distinct species were characterized by late sexual maturity, few, large offspring, and high parental care, many being sharks and skates that play critical roles in structuring food webs. Both functionally distinct and functionally common species increased in abundance as ocean temperatures warmed and fishing pressure decreased over the last three decades; however, functionally distinct species increased throughout the North Sea, but primarily in southern North Sea where fishing was historically most intense, indicating a rebound following fleet decommissioning and reduced harvesting. Yet, some of the most functionally distinct species are currently listed as threatened by the IUCN and considered highly vulnerable to fishing pressure. Alarmingly these species have not rebounded. This work highlights the relevance and potential of integrating functional distinctiveness into ecosystem management and conservation prioritization.


Assuntos
Ecossistema , Tubarões , Animais , Mudança Climática , Pesqueiros , Humanos , Mar do Norte
2.
Glob Chang Biol ; 25(11): 3972-3984, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31376310

RESUMO

Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait-based approaches can provide better insight than species-based (i.e. taxonomic) approaches into community assembly and ecosystem functioning, but comparing species and trait dynamics may reveal important patterns for understanding community responses to environmental change. Here, we used a 33-year database of fish monitoring to compare the spatio-temporal dynamics of taxonomic and trait structure in North Sea fish communities. We found that the majority of variation in both taxonomic and trait structure was explained by a pronounced spatial gradient, with distinct communities in the southern and northern North Sea related to depth, sea surface temperature, salinity and bed shear stress. Both taxonomic and trait structure changed significantly over time; however taxonomically, communities in the south and north diverged towards different species, becoming more dissimilar over time, yet they converged towards the same traits regardless of species differences. In particular, communities shifted towards smaller, faster growing species with higher thermal preferences and pelagic water column position. Although taxonomic structure changed over time, its spatial distribution remained relatively stable, whereas in trait structure, the southern zone of the North Sea shifted northward and expanded, leading to homogenization. Our findings suggest that global environmental change, notably climate warming, will lead to convergence towards traits more adapted for novel environments regardless of species composition.


Assuntos
Ecossistema , Peixes , Animais , Biodiversidade , Fenótipo , Temperatura
3.
Sci Rep ; 9(1): 8873, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222019

RESUMO

The presence and the amount of specific yeasts in the diet of saprophagous insects such as Drosophila can affect their development and fitness. However, the impact of different yeast species in the juvenile diet has rarely been investigated. Here, we measured the behavioural and fitness effects of three live yeasts (Saccharomyces cerevisiae = SC; Hanseniaspora uvarum = HU; Metschnikowia pulcherrima = MP) added to the diet of Drosophila melanogaster larvae. Beside these live yeast species naturally found in natural Drosophila populations or in their food sources, we tested the inactivated "drySC" yeast widely used in Drosophila research laboratories. All flies were transferred to drySC medium immediately after adult emergence, and several life traits and behaviours were measured. These four yeast diets had different effects on pre-imaginal development: HU-rich diet tended to shorten the "egg-to-pupa" period of development while MP-rich diet induced higher larval lethality compared to other diets. Pre- and postzygotic reproduction-related characters (copulatory ability, fecundity, cuticular pheromones) varied according to juvenile diet and sex. Juvenile diet also changed adult food choice preference and longevity. These results indicate that specific yeast species present in natural food sources and ingested by larvae can affect their adult characters crucial for fitness.


Assuntos
Dieta , Drosophila melanogaster/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Animais , Feminino , Fertilidade , Preferências Alimentares , Hanseniaspora , Longevidade , Masculino , Metschnikowia , Reprodução , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA