Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2315481121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870060

RESUMO

Intracellular bacterial pathogens divert multiple cellular pathways to establish their niche and persist inside their host. Coxiella burnetii, the causative agent of Q fever, secretes bacterial effector proteins via its Type 4 secretion system to generate a Coxiella-containing vacuole (CCV). Manipulation of lipid and protein trafficking by these effectors is essential for bacterial replication and virulence. Here, we have characterized the lipid composition of CCVs and found that the effector Vice interacts with phosphoinositides and membranes enriched in phosphatidylserine and lysobisphosphatidic acid. Remarkably, eukaryotic cells ectopically expressing Vice present compartments that resemble early CCVs in both morphology and composition. We found that the biogenesis of these compartments relies on the double function of Vice. The effector protein initially localizes at the plasma membrane of eukaryotic cells where it triggers the internalization of large vacuoles by macropinocytosis. Then, Vice stabilizes these compartments by perturbing the ESCRT machinery. Collectively, our results reveal that Vice is an essential C. burnetii effector protein capable of hijacking two major cellular pathways to shape the bacterial replicative niche.


Assuntos
Proteínas de Bactérias , Coxiella burnetii , Complexos Endossomais de Distribuição Requeridos para Transporte , Pinocitose , Vacúolos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Humanos , Células HeLa , Membrana Celular/metabolismo , Animais , Fosfatidilinositóis/metabolismo
3.
Methods Mol Biol ; 2807: 61-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743221

RESUMO

The 20-year revolution in optical fluorescence microscopy, supported by the optimization of both spatial resolution and timely acquisition, allows the visualization of nanoscaled objects in cell biology. Currently, the use of a recent generation of super-resolution fluorescence microscope coupled with improved fluorescent probes gives the possibility to study the replicative cycle of viruses in living cells, at the single-virus particle or protein level. Here, we highlight the protocol for visualizing HIV-1 Gag assembly at the host T-cell plasma membrane using super-resolution light microscopy. Total internal reflection fluorescence microscopy (TIRF-M) coupled with single-molecule localization microscopy (SMLM) enables the detection and characterization of the assembly of viral proteins at the plasma membrane of infected host cells at the single protein level. Here, we describe the TIRF equipment, the T-cell culture for HIV-1, the sample preparation for single-molecule localization microscopies such as PALM and STORM, acquisition protocols, and Gag assembling cluster analysis.


Assuntos
Membrana Celular , HIV-1 , Microscopia de Fluorescência , Imagem Individual de Molécula , Linfócitos T , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1/fisiologia , Humanos , Membrana Celular/metabolismo , Membrana Celular/virologia , Imagem Individual de Molécula/métodos , Linfócitos T/virologia , Linfócitos T/metabolismo , Microscopia de Fluorescência/métodos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA