Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Cell ; 186(25): 5438-5439, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065077

RESUMO

An Arabidopsis cell-surface auxin receptor that mediates rapid elongation consists of transmembrane kinases (TMKs) and an auxin-binding co-receptor. Auxin-binding protein 1 (ABP1) is one identified TMK co-receptor, but abp1 mutants have no elongation phenotypes. Yu et al. use structural analysis of the ABP1-binding pocket to identify functional ABP1-like (ABL) TMK co-receptors that regulate rapid growth.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Transdução de Sinais
3.
Plant Physiol ; 184(3): 1601-1612, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32855213

RESUMO

Blue light regulates multiple processes that optimize light capture and gas exchange in plants, including chloroplast movement, changes in stomatal conductance, and altered organ positioning. In Arabidopsis (Arabidopsis thaliana), these processes are primarily modulated by the blue light phototropin photoreceptors phot1 and phot2. Changes in leaf positioning and shape involve several signaling components that include NON-PHOTOTROPIC HYPOCOTYL3, PHYTOCHROME KINASE SUBSTRATE, ROOT PHOTOTROPISM2, and alterations in localized auxin streams. Direct phosphorylation of the auxin transporter ATP-BINDING CASSETTE subfamily B19 (ABCB19) by phot1 in phototropic seedlings suggests that phot1 may directly regulate ABCB19 to adjust auxin-dependent leaf responses. Here, abcb19 mutants were analyzed for fluence and blue light-dependent changes in leaf positioning and morphology. abcb19 displays upright petiole angles that remain unchanged in response to red and blue light. Similarly, abcb19 mutants develop irregularly wavy rosette leaves that are less sensitive to blue light-mediated leaf flattening. Visualization of auxin distribution, measurement of auxin transport in protoplasts, and direct quantification of free auxin levels suggest these irregularities are caused by misregulation of ABCB19-mediated auxin distribution in addition to light-dependent auxin biosynthesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Luz , Fototropismo/genética , Fototropismo/fisiologia , Fitocromo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Fitocromo/genética , Folhas de Planta/metabolismo
4.
Theor Appl Genet ; 134(7): 2303-2314, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33830295

RESUMO

KEY MESSAGE: This work reports a quick method that integrates RH mapping and genetic mapping to map the dominant Mov-1 locus to a 1.1-Mb physical interval with a small number of candidate genes. Bread wheat is an important crop for global human population. Identification of genes and alleles controlling agronomic traits is essential toward sustainably increasing crop production. The unique multi-ovary (MOV) trait in wheat holds potential for improving yields and is characterized by the formation of 2-3 grains per spikelet. The genetic basis of the multi-ovary trait is known to be monogenic and dominant in nature. Its precise mapping and functional characterization is critical to utilizing this trait in a feasible manner. Previous mapping efforts of the locus controlling multiple ovary/pistil formation in the hexaploid wheat have failed to produce a consensus for a particular chromosome. We describe a mapping strategy integrating radiation hybrid mapping and high-resolution genetic mapping to locate the chromosomal position of the Mov-1 locus in hexaploid wheat. We used RH mapping approach using a panel of 188 lines to map the Mov-1 locus in the terminal part of long arm of wheat chromosome 2D with a map resolution of 1.67 Mb/cR1500. Then using a genetic population of MOV × Synthetic wheat of F2 lines, we delineated the Mov-1 locus to a 1.1-Mb physical region with a small number of candidate genes. This demonstrates the value of this integrated strategy to mapping dominant genes in wheat.


Assuntos
Mapeamento de Híbridos Radioativos , Recombinação Genética , Triticum/genética , Alelos , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Fenótipo , Poliploidia , Sementes
5.
J Exp Bot ; 71(15): 4512-4530, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32161967

RESUMO

Seasonal nitrogen (N) cycling in Populus, involves bark storage proteins (BSPs) that accumulate in bark phloem parenchyma in the autumn and decline when shoot growth resumes in the spring. Little is known about the contribution of BSPs to growth or the signals regulating N remobilization from BSPs. Knockdown of BSP accumulation via RNAi and N sink manipulations were used to understand how BSP storage influences shoot growth. Reduced accumulation of BSPs delayed bud break and reduced shoot growth following dormancy. Further, 13N tracer studies also showed that BSP accumulation is an important factor in N partitioning from senescing leaves to bark. Thus, BSP accumulation has a role in N remobilization during N partitioning both from senescing leaves to bark and from bark to expanding shoots once growth commences following dormancy. The bark transcriptome during BSP catabolism and N remobilization was enriched in genes associated with auxin transport and signaling, and manipulation of the source of auxin or auxin transport revealed a role for auxin in regulating BSP catabolism and N remobilization. Therefore, N remobilization appears to be regulated by auxin produced in expanding buds and shoots that is transported to bark where it regulates protease gene expression and BSP catabolism.


Assuntos
Populus , Ácidos Indolacéticos , Nitrogênio , Radioisótopos de Nitrogênio , Proteínas de Plantas/genética , Brotos de Planta , Populus/genética , Estações do Ano , Árvores
6.
BMC Plant Biol ; 19(1): 435, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31638898

RESUMO

BACKGROUND: Adventitious root (AR) formation is a critical developmental process in cutting propagation for the horticultural industry. While auxin has been shown to regulate this process, the exact mechanism and details preceding AR formation remain unclear. Even though AR and lateral root (LR) formation share common developmental processes, there are exist some differences that need to be closely examined at the cytological level. Tomato stem cuttings, which readily form adventitious roots, represent the perfect system to study the influence of auxin on AR formation and to compare AR and LR organogenesis. RESULTS: Here we show the progression by which AR form from founder cells in the basal pericycle cell layers in tomato stem cuttings. The first disordered clumps of cells assumed a dome shape that later differentiated into functional AR cell layers. Further growth resulted in emergence of mature AR through the epidermis following programmed cell death of epidermal cells. Auxin and ethylene levels increased in the basal stem cutting within 1 h. Tomato lines expressing the auxin response element DR5pro:YFP showed an increase in auxin distribution during the AR initiation phase, and was mainly concentrated in the meristematic cells of the developing AR. Treatment of stem cuttings with auxin, increased the number of AR primordia and the length of AR, while stem cuttings treated with the pre-emergent herbicide/auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) occasionally developed thick, agravitropic AR. Hormone profile analyses showed that auxin positively regulated AR formation, whereas perturbations to zeatin, salicylic acid, and abscisic acid homeostasis suggested minor roles during tomato stem rooting. The gene expression of specific auxin transporters increased during specific developmental phases of AR formation. CONCLUSION: These data show that AR formation in tomato stems is a complex process. Upon perception of a wounding stimulus, expression of auxin transporter genes and accumulation of auxin at founder cell initiation sites in pericycle cell layers and later in the meristematic cells of the AR primordia were observed. A clear understanding and documentation of these events in tomato is critical to resolve AR formation in recalcitrant species like hardwoods and improve stem cutting propagation efficiency and effectiveness.


Assuntos
Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento
8.
Plant Cell ; 27(12): 3383-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26589552

RESUMO

The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Genoma de Planta/genética , Pirofosfatase Inorgânica/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/enzimologia , Aclimatação , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Temperatura Baixa , Endossomos/enzimologia , Flores/citologia , Flores/enzimologia , Flores/genética , Flores/fisiologia , Concentração de Íons de Hidrogênio , Pirofosfatase Inorgânica/antagonistas & inibidores , Pirofosfatase Inorgânica/genética , Meristema/citologia , Meristema/enzimologia , Meristema/genética , Meristema/fisiologia , Mutagênese Insercional , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plântula/citologia , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Análise de Sequência de DNA , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/genética , Rede trans-Golgi/enzimologia
9.
EMBO J ; 32(21): 2884-95, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24121311

RESUMO

Elucidating molecular links between cell-fate regulatory networks and dynamic patterning modules is a key for understanding development. Auxin is important for plant patterning, particularly in roots, where it establishes positional information for cell-fate decisions. PIN genes encode plasma membrane proteins that serve as auxin efflux transporters; mutations in members of this gene family exhibit smaller roots with altered root meristems and stem-cell patterning. Direct regulators of PIN transcription have remained elusive. Here, we establish that a MADS-box gene (XAANTAL2, XAL2/AGL14) controls auxin transport via PIN transcriptional regulation during Arabidopsis root development; mutations in this gene exhibit altered stem-cell patterning, root meristem size, and root growth. XAL2 is necessary for normal shootward and rootward auxin transport, as well as for maintaining normal auxin distribution within the root. Furthermore, this MADS-domain transcription factor upregulates PIN1 and PIN4 by direct binding to regulatory regions and it is required for PIN4-dependent auxin response. In turn, XAL2 expression is regulated by auxin levels thus establishing a positive feedback loop between auxin levels and PIN regulation that is likely to be important for robust root patterning.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas de Domínio MADS/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Arabidopsis/genética , Proteínas de Domínio MADS/genética , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/fisiologia
10.
Plant Biotechnol J ; 15(12): 1556-1565, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28376249

RESUMO

Plant grafting is an important technique for horticultural and silvicultural production. However, many rootstock plants suffer from undesirable lateral bud outgrowth, low grafting success rates or poor rooting. Here, we used a root-predominant gene promoter (SbUGT) to drive the expression of a tryptophan-2-monooxygenase gene (iaaM) from Agrobacterium tumefaciens to increase auxin levels in tobacco. The transgenic plants, when used as a rootstock, displayed inhibited lateral bud outgrowth, enhanced grafting success rate and improved root initiation. However, root elongation and biomass of SbUGT::iaaM transgenic plants were reduced compared to those of wild-type plants. In contrast, when we used this same promoter to drive CKX (a cytokinin degradation gene) expression, the transgenic tobacco plants displayed enhanced root elongation and biomass. We then made crosses between the SbUGT::CKX and SbUGT::iaaM transgenic plants. We observed that overexpression of the CKX gene neutralized the negative effects of auxin overproduction on root elongation. Also, the simultaneous expression of both the iaaM and CKX genes in rootstock did not disrupt normal growth and developmental patterns in wild-type scions. Our results demonstrate that expression of both the iaaM and CKX genes predominantly in roots of rootstock inhibits lateral bud release from rootstock, improves grafting success rates and enhances root initiation and biomass.


Assuntos
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Nicotiana/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Citocininas/genética , Regulação da Expressão Gênica de Plantas , Oxirredutases/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Nicotiana/crescimento & desenvolvimento
11.
Plant Physiol ; 170(2): 627-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26644504

RESUMO

A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies.


Assuntos
Arabidopsis/genética , Vetores Genéticos , Arabidopsis/citologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes Reporter , Especificidade de Órgãos , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão
12.
Plant Cell ; 26(5): 2129-2142, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24858935

RESUMO

The plant hormone auxin promotes cell expansion. Forty years ago, the acid growth theory was proposed, whereby auxin promotes proton efflux to acidify the apoplast and facilitate the uptake of solutes and water to drive plant cell expansion. However, the underlying molecular and genetic bases of this process remain unclear. We have previously shown that the SAUR19-24 subfamily of auxin-induced SMALL AUXIN UP-RNA (SAUR) genes promotes cell expansion. Here, we demonstrate that SAUR proteins provide a mechanistic link between auxin and plasma membrane H+-ATPases (PM H+-ATPases) in Arabidopsis thaliana. Plants overexpressing stabilized SAUR19 fusion proteins exhibit increased PM H+-ATPase activity, and the increased growth phenotypes conferred by SAUR19 overexpression are dependent upon normal PM H+-ATPase function. We find that SAUR19 stimulates PM H+-ATPase activity by promoting phosphorylation of the C-terminal autoinhibitory domain. Additionally, we identify a regulatory mechanism by which SAUR19 modulates PM H+-ATPase phosphorylation status. SAUR19 as well as additional SAUR proteins interact with the PP2C-D subfamily of type 2C protein phosphatases. We demonstrate that these phosphatases are inhibited upon SAUR binding, act antagonistically to SAURs in vivo, can physically interact with PM H+-ATPases, and negatively regulate PM H+-ATPase activity. Our findings provide a molecular framework for elucidating auxin-mediated control of plant cell expansion.

13.
PLoS Genet ; 10(1): e1003954, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391508

RESUMO

Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(31): 11557-62, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049419

RESUMO

The plant hormone auxin is a key morphogenetic signal that controls many aspects of plant growth and development. Cellular auxin levels are coordinately regulated by multiple processes, including auxin biosynthesis and the polar transport and metabolic pathways. The auxin concentration gradient determines plant organ positioning and growth responses to environmental cues. Auxin transport systems play crucial roles in the spatiotemporal regulation of the auxin gradient. This auxin gradient has been analyzed using SCF-type E3 ubiquitin-ligase complex-based auxin biosensors in synthetic auxin-responsive reporter lines. However, the contributions of auxin biosynthesis and metabolism to the auxin gradient have been largely elusive. Additionally, the available information on subcellular auxin localization is still limited. Here we designed fluorescently labeled auxin analogs that remain active for auxin transport but are inactive for auxin signaling and metabolism. Fluorescent auxin analogs enable the selective visualization of the distribution of auxin by the auxin transport system. Together with auxin biosynthesis inhibitors and an auxin biosensor, these analogs indicated a substantial contribution of local auxin biosynthesis to the formation of auxin maxima at the root apex. Moreover, fluorescent auxin analogs mainly localized to the endoplasmic reticulum in cultured cells and roots, implying the presence of a subcellular auxin gradient in the cells. Our work not only provides a useful tool for the plant chemical biology field but also demonstrates a new strategy for imaging the distribution of small-molecule hormones.


Assuntos
Corantes Fluorescentes/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Transporte Biológico , Fluorescência , Ácidos Indolacéticos/química , Meristema/citologia , Meristema/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Frações Subcelulares/metabolismo
15.
Plant Biotechnol J ; 14(10): 1998-2009, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26929151

RESUMO

Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.


Assuntos
Arabidopsis/metabolismo , Biomassa , Parede Celular/metabolismo , Ferro/metabolismo , Oryza/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Biocombustíveis , Parede Celular/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
J Exp Bot ; 66(6): 1573-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25725094

RESUMO

The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Microdomínios da Membrana/metabolismo , Arabidopsis/citologia , Lipídeos de Membrana/metabolismo , Transporte Proteico
17.
Plant Cell ; 24(7): 2874-85, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22773749

RESUMO

Auxin transport, which is mediated by specialized influx and efflux carriers, plays a major role in many aspects of plant growth and development. AUXIN1 (AUX1) has been demonstrated to encode a high-affinity auxin influx carrier. In Arabidopsis thaliana, AUX1 belongs to a small multigene family comprising four highly conserved genes (i.e., AUX1 and LIKE AUX1 [LAX] genes LAX1, LAX2, and LAX3). We report that all four members of this AUX/LAX family display auxin uptake functions. Despite the conservation of their biochemical function, AUX1, LAX1, and LAX3 have been described to regulate distinct auxin-dependent developmental processes. Here, we report that LAX2 regulates vascular patterning in cotyledons. We also describe how regulatory and coding sequences of AUX/LAX genes have undergone subfunctionalization based on their distinct patterns of spatial expression and the inability of LAX sequences to rescue aux1 mutant phenotypes, respectively. Despite their high sequence similarity at the protein level, transgenic studies reveal that LAX proteins are not correctly targeted in the AUX1 expression domain. Domain swapping studies suggest that the N-terminal half of AUX1 is essential for correct LAX localization. We conclude that Arabidopsis AUX/LAX genes encode a family of auxin influx transporters that perform distinct developmental functions and have evolved distinct regulatory mechanisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Padronização Corporal , Cotilédone/citologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/genética , Família Multigênica , Mutagênese Insercional , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/citologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
18.
Plant J ; 74(1): 37-47, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23279701

RESUMO

The Arabidopsis ATP-binding cassette B19 (ABCB19, P-glycoprotein19) transporter functions coordinately with ABCB1 and PIN1 to motivate long-distance transport of the phytohormone auxin from the shoot to root apex. ABCB19 exhibits a predominantly apolar plasma membrane (PM) localization and stabilizes PIN1 when the two proteins co-occur. Biochemical evidence associates ABCB19 and PIN1 with sterol- and sphingolipid-enriched PM fractions. Mutants deficient in structural sterols and sphingolipids exhibit similarity to abcb19 mutants. Sphingolipid-defective tsc10a mutants and, to a lesser extent, sterol-deficient cvp1 mutants phenocopy abcb19 mutants. Live imaging studies show that sterols function in trafficking of ABCB19 from the trans-Golgi network to the PM. Pharmacological or genetic sphingolipid depletion has an even greater impact on ABCB19 PM targeting and interferes with ABCB19 trafficking from the Golgi. Our results also show that sphingolipids function in trafficking associated with compartments marked by the VTI12 syntaxin, and that ABCB19 mediates PIN1 stability in sphingolipid-containing membranes. The TWD1/FKBP42 co-chaperone immunophilin is required for exit of ABCB19 from the ER, but ABCB19 interactions with sterols, sphingolipids and PIN1 are spatially distinct from FKBP42 activity at the ER. The accessibility of this system to direct live imaging and biochemical analysis makes it ideal for the modeling and analysis of sterol and sphingolipid regulation of ABCB/P-glycoprotein transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Transporte Proteico , Proteínas de Ligação a Tacrolimo/metabolismo , Rede trans-Golgi/metabolismo
19.
Plant J ; 73(5): 709-19, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23163883

RESUMO

In land plants polar auxin transport is one of the substantial processes guiding whole plant polarity and morphogenesis. Directional auxin fluxes are mediated by PIN auxin efflux carriers, polarly localized at the plasma membrane. The polarization of exocytosis in yeast and animals is assisted by the exocyst: an octameric vesicle-tethering complex and an effector of Rab and Rho GTPases. Here we show that rootward polar auxin transport is compromised in roots of Arabidopsis thaliana loss-of-function mutants in the EXO70A1 exocyst subunit. The recycling of PIN1 and PIN2 proteins from brefeldin-A compartments is delayed after the brefeldin-A washout in exo70A1 and sec8 exocyst mutants. Relocalization of PIN1 and PIN2 proteins after prolonged brefeldin-A treatment is largely impaired in these mutants. At the same time, however, plasma membrane localization of GFP:EXO70A1, and the other exocyst subunits studied (GFP:SEC8 and YFP:SEC10), is resistant to brefeldin-A treatment. In root cells of the exo70A1 mutant, a portion of PIN2 is internalized and retained in specific, abnormally enlarged, endomembrane compartments that are distinct from VHA-a1-labelled early endosomes or the trans-Golgi network, but are RAB-A5d positive. We conclude that the exocyst is involved in PIN1 and PIN2 recycling, and thus in polar auxin transport regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brefeldina A/farmacologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Padronização Corporal , Membrana Celular/metabolismo , Endossomos/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo
20.
Plant Physiol ; 162(2): 965-76, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23580592

RESUMO

The phytohormone auxin regulates virtually every aspect of plant development. To identify new genes involved in auxin activity, a genetic screen was performed for Arabidopsis (Arabidopsis thaliana) mutants with altered expression of the auxin-responsive reporter DR5rev:GFP. One of the mutants recovered in the screen, designated as weak auxin response3 (wxr3), exhibits much lower DR5rev:GFP expression when treated with the synthetic auxin 2,4-dichlorophenoxyacetic acid and displays severe defects in root development. The wxr3 mutant decreases polar auxin transport and results in a disruption of the asymmetric auxin distribution. The levels of the auxin transporters AUXIN1 and PIN-FORMED are dramatically reduced in the wxr3 root tip. Molecular analyses demonstrate that WXR3 is ROOT ULTRAVIOLET B-SENSITIVE1 (RUS1), a member of the conserved Domain of Unknown Function647 protein family found in diverse eukaryotic organisms. Our data suggest that RUS1/WXR3 plays an essential role in the regulation of polar auxin transport by maintaining the proper level of auxin transporters on the plasma membrane.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Membrana Celular/metabolismo , Endossomos/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Meristema/genética , Meristema/metabolismo , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA