RESUMO
Crohn disease (CD) is a highly morbid chronic inflammatory disease. Although many patients with CD also develop fibrostenosing complications, there are no medical therapies for intestinal fibrosis. This is due, in part, to a lack of high-fidelity biomimetic models to enhance understanding and drug development, which highlights the need for developing in vivo models of inflammatory bowel disease-related intestinal fibrosis. This study investigates whether the TNFΔARE mouse, a model of ileal inflammation, also develops intestinal fibrosis. Several clinically relevant outcomes were studied, including features of structural fibrosis, histologic fibrosis, and gene expression. These include the use of a new luminal casting technique, traditional histologic outcomes, use of second harmonic imaging, and quantitative PCR. These features were studied in aged TNFΔARE mice as well as in cohorts of numerous ages. At >24 weeks of age, TNFΔARE mice developed structural, histologic, and transcriptional changes of ileal fibrosis. Protein and RNA expression profiles showed changes as early as 6 weeks, coinciding with histologic changes as early as 14 to 15 weeks. Overt structural fibrosis was delayed until at least 16 weeks and was most developed after 24 weeks. This study found that the TNFΔARE mouse is a viable and highly tractable model of ileal fibrosis. This model and the techniques used herein can be leveraged for both mechanistic studies and therapeutic development for the treatment of intestinal fibrosis.
Assuntos
Doença de Crohn , Intestinos , Camundongos , Animais , Intestinos/patologia , Doença de Crohn/patologia , Inflamação/patologia , Íleo/metabolismo , FibroseRESUMO
BACKGROUND: Security emergency responses (SERs) are utilized by hospitals to ensure the safety of patients and staff but can cause unintended morbidity. The presence of racial and ethnic inequities in SER utilization has not been clearly elucidated. OBJECTIVE: To determine whether Black and Hispanic patients experience higher rates of SER and physical restraints in a non-psychiatric inpatient setting. DESIGN: Retrospective cohort study. PARTICIPANTS: All patients discharged from September 2018 through December 2019. EXPOSURE: Race and ethnicity, as reported by patients at time of registration. MAIN OUTCOMES: The primary outcome was whether a SER was called on a patient. The secondary outcome was the incidence of physical restraints among patients who experienced a SER. KEY RESULTS: Among 24,212 patients, 18,755 (77.5%) patients identified as white, 2,346 (9.7%) as Black, and 2,425 (10.0%) identified with another race. Among all patients, 1,827 (7.6%) identified as Hispanic and 21,554 (89.0%) as non-Hispanic. Sixty-six (2.8%) Black patients had a SER activated during their first admission, compared to 295 (1.6%) white patients. In a Firth logit multivariable model, Black patients had higher adjusted odds of a SER than white patients (adjusted odds ratio (aOR) 1.37 [95% confidence interval: 1.02, 1.81], p = 0.037). Hispanic patients did not have higher odds of having a SER called than non-Hispanic patients. In a Poisson multivariable model among patients who had a SER called, race and ethnicity were not found to be significant predictors of restraint. CONCLUSION: Black patients had higher odds of a SER compared to white patients. No significant differences were found between Hispanic and non-Hispanic patients. Future efforts should focus on assessing the generalizability of these findings, the underlying mechanisms driving these inequities, and effective interventions to address them.
Assuntos
Etnicidade , Hispânico ou Latino , Humanos , Estudos Retrospectivos , Hospitais , População NegraRESUMO
BACKGROUND & AIMS: Patients with inflammatory bowel diseases (IBDs) have intestinal barrier dysfunction. Creatine regulates energy distribution within cells and reduces the severity of colitis in mice. We studied the functions of the creatine transporter solute carrier family 6 member 8 (SLC6A8, also called CRT) in intestinal epithelial cells (IECs) and mice, and we measured levels in mucosal biopsies from patients with IBD. METHODS: Colon biopsy specimens from patients with IBD (30 with Crohn's disease and 27 with ulcerative colitis) and 30 patients without IBD (control individuals) and colon tissues from mice (with and without disruption of Crt) were analyzed by immunofluorescence, immunoblots, and/or quantitative reverse-transcription polymerase chain reaction (qRT-PCR). CRT was knocked down or overexpressed in T84 cells, which were analyzed by immunofluorescence, immunoblots, high-performance liquid chromatography (to measure creatine levels), qRT-PCR, transepithelial electrical resistance, barrier function, actin localization, wound healing, mitochondrial oxygen consumption, and glycolysis extracellular acidification rate assays. Organoids from colon cells of CRT-knockout mice and control mice were analyzed by qRT-PCR, immunoblot, and transepithelial electrical resistance. RESULTS: CRT localized around tight junctions (TJs) of T84 IECs. In analyses of IECs with CRT knockdown or overexpression, we found that CRT regulates intracellular creatine, barrier formation, and wound healing. CRT-knockout organoids also had diminished barrier formation. In the absence of adequate creatine, IECs transition toward a stressed, glycolysis-predominant form of metabolism; this resulted in leaky TJs and mislocalization of actin and TJ proteins. Colon tissues from patients with IBD had reduced levels of CRT messenger RNA compared with those from control individuals. CONCLUSIONS: In an analysis of IEC cell lines and colonoids derived from CRT-knockout mice, we found that CRT regulates energy balance in IECs and thereby epithelial integrity and barrier function. Mucosal biopsy specimens from patients with ulcerative colitis and inactive Crohn's disease have lower levels of CRT, which might contribute to the reduced barrier function observed in patients with IBD.
Assuntos
Colite Ulcerativa/patologia , Colo/patologia , Doença de Crohn/patologia , Mucosa Intestinal/patologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Adulto , Animais , Biópsia , Estudos de Casos e Controles , Linhagem Celular , Metabolismo Energético , Células Epiteliais/citologia , Células Epiteliais/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Junções Íntimas/patologiaRESUMO
BACKGROUND: AS1411 is a 26-mer G-rich DNA oligonucleotide that forms a variety of G-quadruplex structures. It was identified based on its cancer-selective antiproliferative activity and subsequently determined to be an aptamer to nucleolin, a multifunctional protein that preferentially binds quadruplex nucleic acids and which is present at high levels on the surface of cancer cells. AS1411 has exceptionally efficient cellular internalization compared to non-quadruplex DNA sequences. SCOPE OF REVIEW: Recent developments related to AS1411 will be examined, with a focus on its use for targeted delivery of therapeutic and imaging agents. MAJOR CONCLUSIONS: Numerous research groups have used AS1411 as a targeting agent to deliver nanoparticles, oligonucleotides, and small molecules into cancer cells. Studies in animal models have demonstrated that AS1411-linked materials can accumulate selectively in tumors following systemic administration. The mechanism underlying the cancer-targeting ability of AS1411 is not completely understood, but recent studies suggest a model that involves: (1) initial uptake by macropinocytosis, a form of endocytosis prevalent in cancer cells; (2) stimulation of macropinocytosis by a nucleolin-dependent mechanism resulting in further uptake; and (3) disruption of nucleolin-mediated trafficking and efflux leading to cargoes becoming trapped inside cancer cells. SIGNIFICANCE: Human trials have indicated that AS1411 is safe and can induce durable remissions in a few patients, but new strategies are needed to maximize its clinical impact. A better understanding of the mechanisms by which AS1411 targets and kills cancer cells may hasten the development of promising technologies using AS1411-linked nanoparticles or conjugates for cancer-targeted therapy and imaging. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Assuntos
Antineoplásicos/uso terapêutico , Diagnóstico por Imagem/métodos , Portadores de Fármacos , Quadruplex G , Guanosina/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Aptâmeros de Nucleotídeos , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/metabolismo , Guanosina/química , Humanos , Ligantes , Neoplasias/genética , Neoplasias/metabolismo , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Relação Estrutura-Atividade , NucleolinaRESUMO
INTRODUCTION: Telemedicine is an increasingly common form of healthcare delivery in the United States. It is unclear how there are differences in clinical performance in early learners between in-person and telemedicine encounters. MATERIALS & METHODS: The authors conducted a single-site retrospective cohort study of 241 second-year medical students to compare performance between in-person and telemedicine standardized patient (SP) encounters. One hundred and twenty medical students in the 2020 academic year participated in a telemedicine encounter, and 121 medical students in the 2022 academic year participated in an in-person encounter. SPs completed a multi-domain performance checklist following the encounter, and the authors performed statistical analyses to compare student performance between groups. RESULTS: Students who completed in-person encounters had higher mean scores in overall performance (75.2 vs. 69.7, p < 0.001). They had higher scores in physical exam (83.3 vs. 50, p < 0.001) and interpersonal communication domains (95 vs. 85, p < 0.001) and lower scores in obtaining a history (73.3 vs. 80, p = 0.0025). There was no significant difference in assessment and plan scores (50 vs. 50, p = 0.96) or likelihood of appropriately promoting antibiotic stewardship (41.3% vs. 45.8%, p = 0.48). CONCLUSION: The authors identified significant differences in clinical performance between in-person and telemedicine SP encounters, indicating that educational needs may differ between clinical environments.
Assuntos
Competência Clínica , Estudantes de Medicina , Telemedicina , Humanos , Estudos Retrospectivos , Estudantes de Medicina/psicologia , Simulação de Paciente , Feminino , Masculino , Educação de Graduação em Medicina , Comunicação , Exame Físico/normas , Relações Médico-PacienteRESUMO
BACKGROUND AND OBJECTIVES: The Association of American Medical Colleges identifies telemedicine competence as an important skill for graduating medical students, but which educational methods are effective in improving student performance is unclear. We aimed to assess the impact of two educational interventions on student performance in telemedicine standardized patient encounters. METHODS: Sixty second-year medical students participated in the telemedicine curriculum during their required longitudinal ambulatory clerkship. Students first completed a preintervention telemedicine standardized patient (SP) encounter in October 2020. They subsequently were assigned to two intervention groups (ie, a role-play intervention, N=30; a faculty demonstration, N=30) and completed a teaching case. In December 2020, they completed a postintervention telemedicine SP encounter. Each case was a unique clinical scenario. SPs scored the encounters across six domains based on a standardized performance checklist. We compared the median scores for these domains and the median total score pre- and postintervention (using Wilcoxon signed rank and rank-sum tests) and the difference in median score by intervention type. RESULTS: Students scored highly in history-taking and communication performance but had low physical exam (PE) and assessment/plan scores. Postintervention, median scores in PE (ie, median score difference 2, interquartile ranges [IQR] 1-3.5, P<.001), assessment/plan (ie, median score difference 0.5, IQR 0-2, P=.005), and overall performance improved significantly (ie, median score difference 3, IQR 0-5, P<.001). CONCLUSIONS: Early medical students had low performance at baseline in telemedicine PE and assessment/plan skills, but both a role-play intervention and faculty demonstration led to significant increases in student performance.
Assuntos
Estudantes de Medicina , Telemedicina , Humanos , Lista de Checagem , Comunicação , CurrículoRESUMO
Inflammatory diseases of the digestive tract, including inflammatory bowel disease (IBD), cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in IBD patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model. In the present studies, we evaluated the role of CK loss in active inflammation using the DSS colitis model. Mice lacking expression of CKB/CKMit (CKdKO) showed increased susceptibility to DSS colitis (weight loss, disease activity, permeability, colon length and histology). In a broad cytokine profiling, CKdKO mice expressed near absent IFN-γ levels. We identified losses in IFN-γ production from CD4 + and CD8 + T cells isolated from CKdKO mice. Addback of IFN-γ during DSS treatment resulted in partial protection for CKdKO mice. We identified basal stabilization of the transcription factor hypoxia-inducible factor (HIF) in CKdKO splenocytes and pharmacological stabilization of HIF resulted in reduced IFN-γ production by control splenocytes. Thus, the loss of IFN-γ production by CD4 + and CD8 + T cells in CKdKO mice resulted in increased colitis susceptibility and indicates that CK is protective in active mucosal inflammation.
RESUMO
Background: Rates of unintended pregnancy may be higher in women living with human immunodeficiency virus (WLWH) than in the general population, and it is unclear how populations of WLWH with intended and unintended pregnancy differ. We compared baseline characteristics and outcomes between WLWH with intended and unintended pregnancy. Materials and Methods: We conducted a retrospective analysis of WLWH enrolled in a human immunodeficiency virus (HIV) and Pregnancy clinic from 2003 to 2014. Data were analyzed using descriptive statistics, chi-square test, Student's t-test, one-way analysis of variance, and linear and logistic regression analysis. Two-tailed p-value <0.05 was considered significant. The study was approved by the Johns Hopkins University School of Medicine Institutional Review Board. Results: Sixty-nine (27.1%) of 255 women reported an intended pregnancy. Women with intended pregnancy (WWIP) were more likely to be older, White, married, privately insured, and college educated. WWIP were less likely to use tobacco (15.9% vs. 44.2%, p < 0.001), alcohol (2.9% vs. 11.1%, p = 0.041), opiates (0.0% vs. 19.3%, p < 0.001), or cocaine (2.9% vs. 21.0%, p < 0.001) during pregnancy, more likely to disclose their HIV status to the father of the baby by delivery (100.0% vs. 15.8%, p < 0.001), and more likely to receive less effective contraception at delivery (condoms 14.9% vs. 4.8%, p = 0.024; sterilization 11.9% vs. 22.1%, p = 0.028). In multivariate regression analysis, pregnancy intendedness was an important predictor of nondetectable viral load at pregnancy entry but not at delivery. Conclusions: WLWH vary in their baseline characteristics and pregnancy outcomes depending on pregnancy intendedness, highlighting the need to improve pregnancy timing in WLWH and intensify interventions for women with unintended pregnancy.
Assuntos
Anticoncepção , Infecções por HIV , Gravidez não Planejada , Feminino , Humanos , Gravidez , Infecções por HIV/epidemiologia , Estudos Retrospectivos , Intenção , AutorrevelaçãoRESUMO
Background & Aims: Crohn's disease (CD) is a highly morbid chronic inflammatory disease. The majority of CD patients also develop fibrostenosing complications. Despite this, there are no medical therapies for intestinal fibrosis. This is in part due to lack of high-fidelity biomimetic models to enhance understanding and drug development. There is a need to develop in vivo models of inflammatory bowel disease-related intestinal fibrosis. We sought to determine if the TNF ΔARE mouse, a model of ileal inflammation, may also develop intestinal fibrosis. Methods: Several clinically relevant outcomes were studied including features of structural fibrosis, histological fibrosis, and gene expression. These include the use of a luminal casting technique we developed, traditional histological outcomes, use of second harmonic imaging, and quantitative PCR. These features were studied in aged TNF ΔARE mice as well as in cohorts of numerous ages. Results: At ages of 24+ weeks, TNF ΔARE mice develop structural, histological, and genetic changes of ileal fibrosis. Genetic expression profiles have changes as early as six weeks, followed by histological changes occurring as early as 14-15 weeks, and overt structural fibrosis delayed until after 24 weeks. Discussion: The TNF ΔARE mouse is a viable and highly tractable model of intestinal fibrosis. This model and the techniques employed can be leveraged for both mechanistic studies and therapeutic development for the treatment of intestinal fibrosis.
RESUMO
Inflammatory diseases of the digestive tract, including inflammatory bowel disease, cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in inflammatory bowel disease patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model. In the present studies, we evaluated the role of CK loss in active inflammation using the DSS colitis model. Mice lacking expression of CK brain type/CK mitochondrial form (CKdKO) showed increased susceptibility to DSS colitis (weight loss, disease activity, permeability, colon length, and histology). In a broad cytokine profiling, CKdKO mice expressed near absent interferon gamma (IFN-γ) levels. We identified losses in IFN-γ production from CD4+ and CD8+ T cells isolated from CKdKO mice. Addback of IFN-γ during DSS treatment resulted in partial protection for CKdKO mice. Extensions of these studies identified basal stabilization of the transcription factor hypoxia-inducible factor in CKdKO splenocytes and pharmacological stabilization of hypoxia-inducible factor resulted in reduced IFN-γ production by control splenocytes. Thus, the loss of IFN-γ production by CD4+ and CD8+ T cells in CKdKO mice resulted in increased colitis susceptibility and indicates that CK is protective in active mucosal inflammation.
Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Creatina Quinase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Creatina/metabolismo , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Interferon gama/metabolismo , Inflamação/metabolismo , Hipóxia/metabolismo , Sulfato de Dextrana/farmacologia , Colo/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Citocinas/metabolismoRESUMO
Efficient intracellular delivery of biomolecules is required for a broad range of biomedical research and cell-based therapeutic applications. Ultrasound-mediated sonoporation is an emerging technique for rapid intracellular delivery of biomolecules. Sonoporation occurs when cavitation of gas-filled microbubbles forms transient pores in nearby cell membranes, which enables rapid uptake of biomolecules from the surrounding fluid. Current techniques for in vitro sonoporation of cells in suspension are limited by slow throughput, variability in the ultrasound exposure conditions for each cell, and high cost. To address these limitations, a low-cost acoustofluidic device has been developed which integrates an ultrasound transducer in a PDMS-based fluidic device to induce consistent sonoporation of cells as they flow through the channels in combination with ultrasound contrast agents. The device is fabricated using standard photolithography techniques to produce the PDMS-based fluidic chip. An ultrasound piezo disk transducer is attached to the device and driven by a microcontroller. The assembly can be integrated inside a 3D-printed case for added protection. Cells and microbubbles are pushed through the device using a syringe pump or a peristaltic pump connected to PVC tubing. Enhanced delivery of biomolecules to human T cells and lung cancer cells is demonstrated with this acoustofluidic system. Compared to bulk treatment approaches, this acoustofluidic system increases throughput and reduces variability, which can improve cell processing methods for biomedical research applications and manufacturing of cell-based therapeutics.
Assuntos
Acústica/instrumentação , Células/metabolismo , Fluoresceína/metabolismo , Trealose/metabolismo , Células A549 , Células Cultivadas , Meios de Contraste/química , Humanos , Microbolhas , Linfócitos T/citologia , UltrassomRESUMO
Systemic delivery of conventional chemotherapies can cause negative systemic toxicity, including reduced immunity and damage to organs such as the heart and kidneys-limiting the maximum dose that can be administered. Targeted therapies appear to address this problem by having a specific target while mitigating off-target effects. Biocompatible perfluorocarbon-based nanodroplet emulsions encapsulated by a phospholipid shell are in development for delivery of molecular compounds and hold promise as vehicles for targeted delivery of chemotherapeutics to tumors. When ultrasound is applied, perfluorocarbon will undergo a phase change-ultimately inducing transient perforation of the cell membrane when in close proximity, which is more commonly known as "sonoporation." Sonoporation allows enhanced intracellular delivery of molecular compounds and will reseal to encapsulate the molecular compound intracellularly. In this study, we investigated delivery of thymoquinone (TQ), a natural hydrophobic phytochemical compound with bioactivity in cancer cells. In addition, we conjugated a G-quadruplex aptamer, 'AS1411', to TQ-loaded nanodroplets and explored their effects on multiple human cancer cell lines. AS1411 binds nucleolin, which is over-expressed on the surface of cancer cells, and in addition to its tumor-targeting properties AS1411 has also been shown to induce anti-cancer effects. Thymoquinone was loaded onto AS1411-conjugated nanodroplet emulsion to assess activity against cancer cells. Confocal microscopy indicated uptake of AS1411-conjugated nanodroplets by cancer cells. Furthermore, AS1411-conjugated nanoemulsions loaded with TQ significantly enhanced cytotoxicity in cancer cells compared to free compound. These results demonstrate that AS1411 can be conjugated onto nanodroplet emulsions for targeted delivery to human cancer cells. This novel formulation offers significant potential for targeted delivery of hydrophobic chemotherapeutics to tumors for cancer treatment.
Assuntos
Benzoquinonas/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos , Linhagem Celular Tumoral , HumanosRESUMO
HUWE1 is a HECT-domain ubiquitin E3 ligase expressed in various tissues. Although HUWE1 is known to promote degradation of the tumor suppressor p53, given a growing list of its substrates, in vivo functions of HUWE1 remain elusive. Here, we investigated the role of HUWE1 in the female reproductive system. Homozygous deletion of Huwe1 in mouse oocytes of primary follicles caused oocyte death and female infertility, whereas acute depletion of HUWE1 protein by Trim-Away technology did not impact oocytes from antral follicles. Interestingly, oocytes from Huwe1 heterozygous females matured and fertilized normally, but the majority of embryos that lacked maternal Huwe1 were arrested at the morula stage after fertilization. Consequently, Huwe1 heterozygous females only produced wild-type pups. Concomitant knockout of p53 did not recover fertility of the Huwe1 knockout females. These findings make HUWE1 a unique and critical maternal factor indispensable for maintaining the quality of oocytes and embryos.
RESUMO
Preservation of erythrocytes in a desiccated state for storage at ambient temperature could simplify blood transfusions in austere environments, such as rural clinics, far-forward military operations, and during space travel. Currently, storage of erythrocytes is limited by a short shelf-life of 42 days at 4 °C, and long-term preservation requires a complex process that involves the addition and removal of glycerol from erythrocytes before and after storage at -80 °C, respectively. Natural compounds, such as trehalose, can protect cells in a desiccated state if they are present at sufficient levels inside the cell, but mammalian cell membranes lack transporters for this compound. To facilitate compound loading across the plasma membrane via ultrasound and microbubbles (sonoporation), a polydimethylsiloxane-based microfluidic device was developed. Delivery of fluorescein into erythrocytes was tested at various conditions to assess the effects of parameters such as ultrasound pressure, ultrasound pulse interval, microbubble dose, and flow rate. Changes in ultrasound pressure and mean flow rate caused statistically significant increases in fluorescein delivery of up to 73 ± 37% (p < 0.05) and 44 ± 33% (p < 0.01), respectively, compared to control groups, but no statistically significant differences were detected with changes in ultrasound pulse intervals. Following freeze-drying and rehydration, recovery of viable erythrocytes increased by up to 128 ± 32% after ultrasound-mediated loading of trehalose compared to control groups (p < 0.05). These results suggest that ultrasound-mediated molecular delivery in microfluidic channels may be a viable approach to process erythrocytes for long-term storage in a desiccated state at ambient temperatures.
RESUMO
Ultrasound-induced microbubble destruction can enhance drug delivery to cells. The molecular weight of therapeutic compounds varies significantly (from <1 kDa for small molecule drugs, to 7-15 kDa for siRNAs/miRNAs, to >1000 kDa for DNA plasmids). Therefore, the objective of this study was to determine the relationship between uptake efficiency and molecular weight using equal molar concentrations. Uptake efficiency of fluorescent compounds with different molecular weights (0.3, 10 and 2000 kDa) was explored in vitro using human cardiac mesenchymal cells and breast cancer cells exposed to microbubbles and 2.5-MHz ultrasound pulses. Uptake by viable cells was quantified using flow cytometry. After correction for the fluorescence yield of each compound, there was a significant size-dependent difference in fluorescence intensity, indicating an inverse relationship between size and uptake efficiency. These results suggest that diffusion of therapeutic compounds across permeabilized cell membranes may be an important mechanism for ultrasound-mediated drug delivery.
Assuntos
Neoplasias da Mama/metabolismo , Dextranos/farmacocinética , Fluoresceína-5-Isotiocianato/análogos & derivados , Corantes Fluorescentes/farmacocinética , Miocárdio/metabolismo , Sonicação/métodos , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Feminino , Citometria de Fluxo , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Mesoderma , Microbolhas , Peso MolecularRESUMO
Tuberous sclerosis is a developmental genetic disorder caused by mutations in TSC1, which results in epilepsy, autism, and intellectual disability. The cause of these neurological deficits remains unresolved. Imaging studies suggest that the thalamus may be affected in tuberous sclerosis patients, but this has not been experimentally interrogated. We hypothesized that thalamic deletion of Tsc1 at distinct stages of mouse brain development would produce differential phenotypes. We show that mosaic Tsc1 deletion within thalamic precursors at embryonic day (E) 12.5 disrupts thalamic circuitry and alters neuronal physiology. Tsc1 deletion at this early stage is unique in causing both seizures and compulsive grooming in adult mice. In contrast, only a subset of these phenotypes occurs when thalamic Tsc1 is deleted at a later embryonic stage. Our findings demonstrate that abnormalities in a discrete population of neurons can cause global brain dysfunction and that phenotype severity depends on developmental timing and degree of genetic mosaicism.